Temperature and frequency effects on electrical and dielectric properties of n-4H SiC based metal-insulator-semiconductor (MIS) diode interlayered with Si<sub>3</sub>N<sub>4</sub> thin film

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

Effects of frequency and temperature variations on the electrical properties of Au/Si3N4/n-4H SiC diode were investigated. The diode responses to the change in frequency with applied AC signal of varying frequencies and to the change in temperature controlled by cryogenic control system were discussed with considering possible deviation from ideality and effects of interface states at the junction. Depending on its capacitive and conductive characteristics, internal parasitic resistances were associated with the observed dielectric behaviors of the diode. With the use of Si3N4 layer, the values of complex dielectric constant were extracted and this parameter was found to be in a strong dependence of interface changes in low frequency region whereas this variation was very low at higher frequencies. In addition, there is a slight decrease in the dielectric constant with increasing temperature whereas the values of dielectric loss give a remarkable response to the temperature at forward bias region. Depending on these profiles, AC conductivity values were found in decreasing behavior with both frequency and temperature. From the temperature dependent behaviors, activation energies were calculated from the corresponding Arrhenius plots. Together with the series resistance of the diode and density of interface states, interface polarization was found in a dominant role in both complex dielectric and electric modulus characteristics of the diode.

Description

Yıldız, Dilber Esra/0000-0003-2212-199X;

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

28

WoS Q

Q2

Scopus Q

Source

Volume

31

Issue

11

Start Page

8705

End Page

8717

Collections