Operator Splitting of the Kdv-Burgers Type Equation With Fast and Slow Dynamics

dc.contributor.author Aydın, Ayhan
dc.contributor.other Karasözen, Bülent
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-08T12:53:15Z
dc.date.available 2024-07-08T12:53:15Z
dc.date.issued 2015
dc.date.issuedtemp 2015-09-17
dc.description.abstract The Korteweg de Vries-Burgers (KdV-Burgers) type equation arising from the discretiza tion of the viscous Burgers equation with fast dispersion and slow diffusion is solved using operator splitting. The dispersive and diffusive parts are discretized in space by second order conservative finite differences. The resulting system of ordinary differential equations are composed using the time reversible Strang splitting. The numerical results reveal that the periodicity of the solutions and the invariants of the KdV-Burgers equation are well preserved.
dc.identifier.uri https://hdl.handle.net/20.500.14411/6424
dc.institutionauthor Aydın, Ayhan
dc.language.iso en
dc.subject mathematics
dc.title Operator Splitting of the Kdv-Burgers Type Equation With Fast and Slow Dynamics
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections