Operator Splitting of the KdV-Burgers Type Equation with Fast and Slow Dynamics

dc.contributor.authorAydın, Ayhan
dc.contributor.otherKarasözen, Bülent
dc.contributor.otherMathematics
dc.date.accessioned2024-07-08T12:53:15Z
dc.date.available2024-07-08T12:53:15Z
dc.date.issued2015
dc.date.issuedtemp2015-09-17
dc.description.abstractThe Korteweg de Vries-Burgers (KdV-Burgers) type equation arising from the discretiza tion of the viscous Burgers equation with fast dispersion and slow diffusion is solved using operator splitting. The dispersive and diffusive parts are discretized in space by second order conservative finite differences. The resulting system of ordinary differential equations are composed using the time reversible Strang splitting. The numerical results reveal that the periodicity of the solutions and the invariants of the KdV-Burgers equation are well preserved.
dc.identifier.urihttps://hdl.handle.net/20.500.14411/6424
dc.institutionauthorAydın, Ayhan
dc.language.isoen
dc.subjectmathematics
dc.titleOperator Splitting of the KdV-Burgers Type Equation with Fast and Slow Dynamics
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files