Designing High Power Density Induction Motors for Electric Propulsion

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Institute of Electrical and Electronics Engineers Inc.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Electrical-Electronics Engineering
The Department of Electrical and Electronics Engineering covers communications, signal processing, high voltage, electrical machines, power distribution systems, radar and electronic warfare, RF, electromagnetic and photonics topics. Most of the theoretical courses in our department are supported by qualified laboratory facilities. Our department has been accredited by MÜDEK since 2013. Within the scope of joint training (COOP), in-company training opportunities are offered to our students. 9 different companies train our students for one semester within the scope of joint education and provide them with work experience. The number of students participating in joint education (COOP) is increasing every year. Our students successfully completed the joint education program that started in the 2019-2020 academic year and started work after graduation. Our department, which provides pre-graduation opportunities to its students with Erasmus, joint education (COOP) and undergraduate research projects, has made an agreement with Upper Austria University of Applied Sciences (Austria) starting from this year and offers its students undergraduate (Atılım University) and master's (Upper Austria) degrees with 3+2 education program. Our department, which has the only European Remote Radio Laboratory in Foundation Universities, has a pioneering position in research (publication, project, patent).

Journal Issue

Abstract

Designing high-power-density electric motors for propulsion has become an increasingly important issue in the past few decades. This is not only because electric vehicles are projected to become the main private transportation means in near future, but also because of the ever so important metro and railway transport requirements. Along with these application areas, electric aircraft propulsion is also coming into focus in recent years. Electric motors for traction are required to have high torque density, high efficiency over a wide speed range and are required to be robust. In recent years, permanent magnet (PM) motors became the favorite choice for such applications because of their higher efficiency than other types of motors. Increasing demand for permanent magnets is likely to cause supply problems. Therefore, permanent magnet-free alternative motor types are of much interest. In this paper, the authors present the design of a 125 kW induction motor for railway application. This design has 3-times the power density of a commercial induction motor. The designed motor is manufactured and its test results are used for establishing an accurate finite-element model for the prediction of its performance. This model is used to investigate the effect of magnetic loading choice, slot shape and magnetic material choice on the efficiency of the motor. It is shown that with the same basic dimensions the efficiency of the motor can be increased to 96% which is comparable with a similar size PM motor. © 2022 IEEE.

Description

Keywords

efficiency, high power density, losses, traction motor

Turkish CoHE Thesis Center URL

Fields of Science

Citation

1

WoS Q

Scopus Q

Source

2022 IEEE 20th International Power Electronics and Motion Control Conference, PEMC 2022 -- 20th IEEE International Power Electronics and Motion Control Conference, PEMC 2022 -- 25 September 2022 through 28 September 2022 -- Brasov -- 184812

Volume

Issue

Start Page

553

End Page

558

Collections