Preparation of polybenzimidazole/ZIF-8 and polybenzimidazole/UiO-66 composite membranes with enhanced proton conductivity
No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Pergamon-elsevier Science Ltd
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Metal-organic frameworks (MOFs) are considered emerging materials as they further improve the various properties of polymer membranes used in energy applications, ranging from electrochemical storage and purification of hydrogen to proton exchange membrane fuel cells. Herein, we fabricate composite membranes consisting of polybenzimidazole (PBI) polymer as a matrix and MOFs as filler. Synthesis of ZIF-8 and UiO-66 MOFs are conducted through a typical solvothermal method, and composite membranes are fabricated with different MOF compositions (e.g., 2.5, 5.0, 7.5, and 10.0 wt %). We report a significant improvement in proton conductivity compared with the pristine PBI; for example, more than a three-fold increase in conductivity is observed when the PBI-UiO66 (10.0 wt %) and PBI-ZIF8 (10.0 wt %) membranes are tested at 160 degrees C. Proton conductivities of the composite membranes vary between 0.225 and 0.316 S cm(-1) at 140 and 160 degrees C. For the comparison, pure PBI exhibits 0.060 S cm(-1) at 140 degrees C and 0.083 S cm(-1) at 160 degrees C. However, we also report a decrease in permeability and mechanical stability with the composite membranes. (C) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Description
DEVRIM, YILSER/0000-0001-8430-0702; Ozkan, Necati/0000-0002-7837-3152; Eren, Enis Oguzhan/0000-0002-5364-6791
Keywords
Polybenzimidazole, Metal-organic-frameworks, Proton conductivity, Composite membranes, Hydrogen energy
Turkish CoHE Thesis Center URL
Fields of Science
Citation
21
WoS Q
Q1
Scopus Q
Source
Volume
47
Issue
45
Start Page
19690
End Page
19701