Predicted Sars-Cov Mirnas Associated With Epigenetic Viral Pathoge-Nesis and the Detection of New Possible Drugs for Covid-19

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Bentham Science Publ Ltd

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Objective: The outbreak of COVID-19 caused by SARS-CoV-2 has promptly spread worldwide. This study aimed to predict mature miRNA sequences in the SARS-CoV-2 genome, their effects on protein-protein interactions in the affected cells, and gene-drug relationships to detect possible drug candidates. Methods: Viral hairpin structure prediction, classification of hairpins, mutational examination of precursor miRNA candidate sequences, Minimum Free Energy (MFE) and regional entropy analysis, mature miRNA sequences, target gene prediction, gene ontology enrichment, and Protein-Protein Interaction (PPI) analysis, and gene-drug interactions were performed. Results: A total of 62 candidate hairpins were detected by VMir analysis. Three hairpin structures were classified as true precursor miRNAs by miRBoost. Five different mutations were detected in precursor miRNA sequences in 100 SARS-CoV-2 viral genomes. Mutations slightly elevated MFE values and entropy in precursor miRNAs. Gene ontology terms associated with fibrotic pathways and immune system were found to be enriched in PANTHER, KEGG and Wiki pathway analysis. PPI analysis showed a network between 60 genes. CytoHubba analysis showed SMAD1 as a hub gene in the network. The targets of the predicted miRNAs, FAM214A, PPM1E, NUFIP2 and FAT4, were downregulated in SARS-CoV-2 infected A549 cells. Conclusion: miRNAs in the SARS-CoV-2 virus genome may contribute to the emergence of the Covid-19 infection by activating pathways associated with fibrosis in the cells infected by the virus and modulating the innate immune system. The hub protein between these pathways may be the SMAD1, which has an effective role in TGF signal transduction.

Description

saygili, eyup ilker/0000-0002-0102-4237; Bayrak, Tuncay/0000-0001-6826-4350; Ogul, Hasan/0000-0002-5121-2893

Keywords

Covid-19, SARS-CoV-2, in silico, miRNA, SMAD1, pandemic, SARS-CoV-2, Tumor Suppressor Proteins, Nuclear Proteins, RNA-Binding Proteins, Cadherins, Antiviral Agents, Epigenesis, Genetic, COVID-19 Drug Treatment, Protein Phosphatase 2C, MicroRNAs, A549 Cells, Humans

Turkish CoHE Thesis Center URL

Fields of Science

0301 basic medicine, 03 medical and health sciences

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
3

Source

Current Drug Delivery

Volume

18

Issue

10

Start Page

1595

End Page

1610

Collections

PlumX Metrics
Citations

CrossRef : 2

Scopus : 3

PubMed : 2

Captures

Mendeley Readers : 30

SCOPUS™ Citations

3

checked on Jan 25, 2026

Web of Science™ Citations

3

checked on Jan 25, 2026

Page Views

2

checked on Jan 25, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.32030278

Sustainable Development Goals

SDG data is not available