Development of an intelligent tutoring system using bayesian networks and fuzzy logic for a higher student academic performance

No Thumbnail Available

Date

2020

Authors

Eryılmaz, Meltem
Adabashi,A.

Journal Title

Journal ISSN

Volume Title

Publisher

MDPI AG

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).

Journal Issue

Abstract

In this experimental study, an intelligent tutoring system called the fuzzy Bayesian intelligent tutoring system (FB-ITS), is developed by using artificial intelligence methods based on fuzzy logic and the Bayesian network technique to adaptively support students in learning environments. The effectiveness of the FB-ITS was evaluated by comparing it with two other versions of an Intelligent Tutoring System (ITS), fuzzy ITS and Bayesian ITS, separately. Moreover, it was evaluated by comparing it with an existing traditional e-learning system. In order to evaluate whether the academic performance of the students in different learning groups differs or not, analysis of covariance (ANCOVA) was used based on the students' pre-test and post-test scores. The study was conducted with 120 undergraduate university students. Results showed that students who studied using FB-ITS had significantly higher academic performance on average compared to other students who studied with the other systems. Regarding the time taken to perform the post-test, the results indicated that students who used the FB-ITS needed less time on average compared to students who used the traditional e-learning system. From the results, it could be concluded that the new system contributed in terms of the speed of performing the final exam and high academic success. © 2020 by the authors.

Description

Keywords

Adaptive e-learning, Bayesian network, Fuzzy logic, Intelligent tutoring system, Knowledge level

Turkish CoHE Thesis Center URL

Fields of Science

Citation

21

WoS Q

Q2

Scopus Q

Source

Applied Sciences (Switzerland)

Volume

10

Issue

19

Start Page

End Page

Collections