First-Principles Investigation of Kaolinite/YSZ Heterostructure for Solar-Driven Photocatalytic Hydrogen Production

Loading...
Thumbnail Image

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-Elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Department
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

This work employs density functional theory (DFT) to elucidate the structural, electronic, and photocatalytic properties of a kaolinite/yttria-stabilized zirconia (Kaol/YSZ) heterostructure tailored for solar-driven hydrogen generation. The lattice mismatch between Kaol(001) and YSZ(111) was determined to be 4.4 % along the a-axis and 2.2 % along the b-axis. Two interface terminations were modeled: an O-terminated Si-O surface and an OH-terminated Al-OH surface. The OH-terminated interface demonstrated a stronger interfacial binding energy (-9.32 eV per cell) and enhanced thermodynamic stability, indicating its suitability for photocatalytic water splitting. Electronic structure analysis reveals that the Kaol/YSZ heterostructure exhibits a narrowed band gap of 1.46 eV relative to the isolated components, which promotes enhanced visible-light absorption. A type-II band alignment is observed, facilitating photoinduced electron transfer from the conduction band of YSZ to the conduction band of Kaol and promoting efficient charge separation. Hirshfeld charge analysis confirms the existence of a built-in electric field at the interface that further drives charge migration. Calculated optical absorption spectra shows a red shift in the heterostructure's absorption edge, extending its photoresponse into the visible region. Under simulated solar irradiation, photogenerated electrons preferentially migrate to Kaol for proton reduction, while holes remain on the YSZ surface to oxidize water, enabling simultaneous H2 evolution and O2 evolution pathways. These findings highlight the promise of the Kaol/YSZ heterostructure as a robust visible-light photocatalyst for sustainable hydrogen production and environmental remediation.

Description

Keywords

Photocatalytic Hydrogen Production, Kaolinite/YSZ Heterostructure, Interfacial Band Alignment, Density Functional Theory (DFT), Visible-Light Absorption, Solar-Driven Water Splitting

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

International Journal of Hydrogen Energy

Volume

173

Issue

Start Page

End Page

Collections

PlumX Metrics
Citations

Scopus : 0

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals

SDG data could not be loaded because of an error. Please refresh the page or try again later.