Reevaluation of Plate-Fin Heatsink Natural Convection Correlations for Sideways and Three-Dimensional Inclinations

Loading...
Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

The common orientations of the plate-fin heat sink for natural convection cooling of electronics are vertical and upward-facing horizontal. However, depending on various use scenarios, the heat sink may be inclined, intentionally or otherwise. In our previous papers concerning this subject, the author proposed a set of correlations for plate-fin heat sinks covering all inclination angles backward and forward (pitch rotation) from the vertical position of the heat sink. The set was based on a series of computational simulations with a validated model. At the time, tilting the heat sink sideways (roll rotation) was not considered. In the present study, though, the sideways inclination of the plate-fin heat sinks is simulated using our previous model only by adjusting the direction of the gravitational acceleration vector, thus requiring no additional validation. It is determined that the previously proposed correlation is valid up to 80 degrees sideways inclinations of the heat sink. Interesting flow structures are observed when the heat sink is tilted 90 degrees sideways. Furthermore, it is demonstrated that the correlation surprisingly remains valid if the heat sink is simultaneously rotated in both axes (pitch and roll).

Description

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q2

Source

Volume

Issue

Start Page

End Page

Collections