Enhancement of Nonlinear Optical and Dielectric Properties of Cu<sub>2</sub>O Films Sandwiched with Indium Slabs

No Thumbnail Available

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this work, the effects of the insertion of indium slabs of thickness 100 nm on the performance of stacked layers of Cu2O are reported. Cu2O/In/Cu2O thin films coated onto ultrasonically cleaned glass substrates are structurally, morphologically, optically, and dielectrically studied. The glassy films of Cu2O display larger, well-ordered grains in an amorphous sea of Cu2O upon insertion of indium slabs between layers of Cu2O. Optically, the indium slabs increase the light absorbability in the IR region by 12.5 times, narrow the energy bandgap, and widen the energy band tails region. They also enhance the nonlinearity in the dielectric response and increase the dielectric constant values by 2.5 times. In addition, the optical conductivity parameters are obtained from the fittings of the dielectric spectra. The analyses reveal an enhancement in the drift mobility, plasmon frequency, and free carrier density via stacking of the indium layer between layers of Cu2O. The drift mobility and plasmon frequency values reach 232.4 cm(2) V-1 s(-1) and 3.95 GHz at a reduced hole-plasmon frequency value of 6.0 x 10(14) Hz (2.48 eV). The values are promising as they indicate the applicability of Cu2O/In/Cu2O interfaces in optoelectronics as thin film transistors and electromagnetic wave cavities.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975

Keywords

Cu2O, In, Cu2O, drift mobility, indium slabs, optical properties, plasmon frequency, stacked layers

Turkish CoHE Thesis Center URL

Citation

2

WoS Q

Scopus Q

Source

Volume

257

Issue

5

Start Page

End Page

Collections