[1,2,5]thiadiazolo[3,4-<i>g</i>]quinoxaline acceptor-based donor-acceptor-donor-type polymers: Effect of strength and size of donors on the band gap
No Thumbnail Available
Date
2017
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Electrochromic polymers based on [1,2,5]thiadiazolo[3,4-g]quinoxaline acceptor and thiophene, 3,4-ethylenedioxythiophene and 3,3-didecyl-3,4-proylenedioxythiophene donors, namely poly(6,7-diphenyl-4,9-di(thiophen-2-yl)-[1,2,5]thiadiazolo[3,4-g]quinoxaline) (P1), poly(4-(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-9-(2,3-dihydrothieno[3,4-b][1,4]dioxin-7-yl)-6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g]quinoxaline) (P2), and poly(4-(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-9-(3,3-didecyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g]quinoxaline) (P3), respectively, were electrochemically and/or chemically synthesized and characterized. Electrochemical and optical properties of the polymers were then investigated. The results, which were obtained electrochemically and optically, indicate that the polymers bearing the same acceptor and different donor units have a band gap range of 0.59-1.24 eV depending on the strength and size of the donor units and band gap determination method. A significant finding in this study was the phenomenon that when the acceptor is physically huge, the general rule that a weak donor would have a high band gap whereas a strong donor would have low band gap can be broken due to the torsional angles/steric hindrances involved with physically large donor molecules. (c) 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 3483-3493
Description
Keywords
band gap engineering, 3, 4-ethylenedioxythiophene, low band gap polymer, 3, 4-proylenedioxythiophene, redox polymers, soluble polymer, steric hindrance, stimuli-sensitive polymers, thiadiazoloquinoxaline, thin films, thiophene
Turkish CoHE Thesis Center URL
Fields of Science
Citation
13
WoS Q
Scopus Q
Source
Volume
55
Issue
20
Start Page
3483
End Page
3493