A Simple Propagation Model To Characterize the Effects of Multiple Human Bodies Blocking Indoor Short-Range Links at 28 Ghz
No Thumbnail Available
Date
2021
Journal Title
Journal ISSN
Volume Title
Publisher
Mdpi
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
This study aims to provide a simple approach to characterize the effects of scattering by human bodies in the vicinity of a short-range indoor link at 28 GHz while the link is fully blocked by another body. In the study, a street canyon propagation characterized by a four-ray model is incorporated to consider the human bodies. For this model, the received signal is assumed to be composed of a direct component that is exposed to shadowing due to a human body blocking the link and a multipath component due to reflections from human bodies around the link. In order to predict the attenuation due to shadowing, the double knife-edge diffraction (DKED) model is employed. Moreover, to predict the attenuation due to multipath, the reflected fields from the human bodies around the link are used. The measurements are compared with the simulations in order to evaluate the prediction accuracy of the model. The acceptable results achieved in this study suggest that this simple model might work correctly for short-range indoor links at millimeter-wave (mmWave) frequencies.
Description
Kara, Ali/0000-0002-9739-7619; Derawi, Mohammad/0000-0003-0448-7613; KARATAS, GOKHAN/0000-0002-6254-6135; Dalveren, Yaser/0000-0002-9459-0042
Keywords
5G, double knife-edge diffraction, human blockage, millimeter-wave, street canyon
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q2
Scopus Q
Source
Volume
10
Issue
3