A Simple Propagation Model to Characterize the Effects of Multiple Human Bodies Blocking Indoor Short-Range Links at 28 GHz

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

This study aims to provide a simple approach to characterize the effects of scattering by human bodies in the vicinity of a short-range indoor link at 28 GHz while the link is fully blocked by another body. In the study, a street canyon propagation characterized by a four-ray model is incorporated to consider the human bodies. For this model, the received signal is assumed to be composed of a direct component that is exposed to shadowing due to a human body blocking the link and a multipath component due to reflections from human bodies around the link. In order to predict the attenuation due to shadowing, the double knife-edge diffraction (DKED) model is employed. Moreover, to predict the attenuation due to multipath, the reflected fields from the human bodies around the link are used. The measurements are compared with the simulations in order to evaluate the prediction accuracy of the model. The acceptable results achieved in this study suggest that this simple model might work correctly for short-range indoor links at millimeter-wave (mmWave) frequencies.

Description

Kara, Ali/0000-0002-9739-7619; Derawi, Mohammad/0000-0003-0448-7613; KARATAS, GOKHAN/0000-0002-6254-6135; Dalveren, Yaser/0000-0002-9459-0042

Keywords

5G, double knife-edge diffraction, human blockage, millimeter-wave, street canyon

Turkish CoHE Thesis Center URL

Citation

6

WoS Q

Q2

Scopus Q

Source

Volume

10

Issue

3

Start Page

End Page

Collections