A fracture-based model for FRP debonding in strengthened beams

No Thumbnail Available

Date

2009

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Civil Engineering
Civil Engineering Department of Atılım University, this opportunity can be attained by two Master of Science programs (with thesis or non-thesis). These programs are divided into the following subdivisions: 1) Construction Management, 2) Materials of Construction, 3) Geotechnical Engineering, 4) Hydromechanics and Water Resources Engineering, 5) Structural Engineering and Mechanics, and 6) Transportation Engineering. So, you can find among these alternatives, a subdiscipline that focuses on your interests and allows you to work toward your career goals. Civil Engineering Department of Atılım University which has a friendly faculty comprised of members with degrees from renowned international universities, laboratories for both educational and research purposes, and other facilities like computer infrastructure and classrooms well-suited for a good graduate education.

Journal Issue

Abstract

This paper presents an experimental and analytical research study aimed at understanding and modeling of debonding failures in fiber reinforced polymer (FRF) strengthened reinforced concrete (RC) beams. The experimental program investigated debonding failure modes and mechanisms in beams strengthened in shear and/or flexure and tested under monotonic loading. A newly developed fracture mechanics based model considers the global energy balance of the system and predicts the FRP debonding failure load by characterizing the dominant mechanisms of energy dissipation during debonding. Validation of the model is performed using experimental data from several independent research studies and a design procedure is outlined. (C) 2009 Elsevier Ltd. All rights reserved.

Description

Gunes, Oguz/0000-0003-4365-6256

Keywords

FRP, Strengthening, Beams, Debonding, Fracture

Turkish CoHE Thesis Center URL

Fields of Science

Citation

60

WoS Q

Q1

Scopus Q

Source

Volume

76

Issue

12

Start Page

1897

End Page

1909

Collections