A Platform to Synthesize a Soluble Poly(3,4-Ethylenedioxythiophene) Analogue

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

Alkyl-substituted polyhedral oligomeric silsesquioxane (POSS) cage is combined with 3,4-ethylenedioxythiophene under the same roof. The corresponding monomer called EDOT-POSS is used to get soluble poly(3,4-ethylenedioxythiophene) (PEDOT-POSS) analogue. Both chemically and electrochemically obtained polymers are soluble in common organic solvents like dichloromethane, chloroform, tetrahydrofuran, and so forth. The PEDOT-POSS has somewhat higher band gap (1.71 eV at 618 nm) than its parent PEDOT (1.60 eV at 627 nm) and as expected the PEDOT-POSS exhibits higher optical contrast (74% at 618 nm) and coloration efficiency (582 cm(2)/C for 100% switching), lower switching time (0.9 s), higher electrochemical stability (93% of its electroactivity retains after 5000 cycles under ambient conditions) when compared to the PEDOT. A number of advantages of the PEDOT-POSS over the PEDOT can make it a promising material in the areas of electro-optical applications. (C) 2017 Wiley Periodicals, Inc.

Description

ertan, salih/0000-0001-8852-1879

Keywords

electrochromism, PEDOT, polyhedral oligomeric silsesquioxane, POSS, thiophene

Turkish CoHE Thesis Center URL

Fields of Science

Citation

10

WoS Q

Scopus Q

Source

Volume

55

Issue

23

Start Page

3935

End Page

3941

Collections