Indoor Propagation Analysis of Iqrf Technology for Smart Building Applications

Loading...
Publication Logo

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Mdpi

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

Owing to its efficiency in the Internet of Things (IoT) applications in terms of low-power connectivity, IQRF (Intelligent Connectivity using Radio Frequency) technology appears to be one of the most reasonable IoT technologies in the commercial market. To realize emerging smart building applications using IQRF, it is necessary to study the propagation characteristics of IQRF technology in indoor environments. In this study, preliminary propagation measurements are conducted using IQRF transceivers that operate on the 868 MHz band in a peer-to-peer (P2P) configured system. The measurements are conducted both in a single corridor of a building in a Line-of-Sight (LoS) link and two perpendicular corridors in a Non-Line-of-Sight (NLoS) with one single knife-edge link. Moreover, the measured path loss values are compared with the predicted path loss values in order to comparatively assess the prediction accuracy of the well-known empirical models, such as log-distance, ITU, and WINNER II. According to the results, it is concluded that the ITU-1 path loss model agrees well with the measurements and could be used in the planning of an IQRF network deployment in a typical LoS corridor environment. For NLoS corridors, both ITU-3 and WINNERII-2 models could be used due to their higher prediction accuracy. We expect that the initial results achieved in this study could open new perspectives for future research on the development of smart building applications.

Description

Mohamed, Marshed/0000-0003-0203-0636; Gupta, Nishu/0000-0002-1568-368X; Derawi, Mohammad/0000-0003-0448-7613; Dalveren, Yaser/0000-0002-9459-0042; Alaya Cheikh, Faouzi/0000-0002-4823-5250; Bouzidi, Mohammed/0000-0002-4858-7360

Keywords

indoor propagation model, internet of things, IQRF, path loss channel modelling, wireless sensor network, indoor propagation model; internet of things; IQRF; path loss channel modelling; wireless sensor network

Turkish CoHE Thesis Center URL

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
3

Source

Electronics

Volume

11

Issue

23

Start Page

3972

End Page

Collections

PlumX Metrics
Citations

CrossRef : 5

Scopus : 6

Captures

Mendeley Readers : 8

SCOPUS™ Citations

6

checked on Feb 08, 2026

Web of Science™ Citations

6

checked on Feb 08, 2026

Page Views

4

checked on Feb 08, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.28545047

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

12

RESPONSIBLE CONSUMPTION AND PRODUCTION
RESPONSIBLE CONSUMPTION AND PRODUCTION Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo