Lobatto Iiia–iiib Discretization of the Strongly Coupled Nonlinear Schrödinger Equation

dc.contributor.author Aydın, Ayhan
dc.contributor.author Karasözen, Bülent
dc.contributor.other Mathematics
dc.date.accessioned 2024-07-08T12:52:53Z
dc.date.available 2024-07-08T12:52:53Z
dc.date.issued 2009
dc.date.issuedtemp 2009-12-24
dc.description.abstract In this paper, we construct a second order semi-explicit multi-symplectic integrator for the strongly coupled nonlinear Schrödinger equation based on the two-stage Lobatto IIIA–IIIB partitioned Runge–Kutta method. Numerical results for different solitary wave solutions including elastic and inelastic collisions, fusion of two solitons and with periodic solutions confirm the excellent long time behavior of the multi-symplectic integrator by preserving global energy, momentum and mass.
dc.identifier.uri https://hdl.handle.net/20.500.14411/6317
dc.institutionauthor Aydın, Ayhan
dc.language.iso en
dc.publisher Journal of Computational and Applied Mathematics
dc.subject mathematics
dc.title Lobatto Iiia–iiib Discretization of the Strongly Coupled Nonlinear Schrödinger Equation
dc.type Article
dspace.entity.type Publication
relation.isAuthorOfPublication 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery 51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication 31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery 31ddeb89-24da-4427-917a-250e710b969c

Files

Collections