Lobatto IIIA–IIIB discretization of the strongly coupled nonlinear Schrödinger equation

dc.contributor.authorAydın, Ayhan
dc.contributor.authorKarasözen, Bülent
dc.contributor.otherMathematics
dc.date.accessioned2024-07-08T12:52:53Z
dc.date.available2024-07-08T12:52:53Z
dc.date.issued2009
dc.date.issuedtemp2009-12-24
dc.description.abstractIn this paper, we construct a second order semi-explicit multi-symplectic integrator for the strongly coupled nonlinear Schrödinger equation based on the two-stage Lobatto IIIA–IIIB partitioned Runge–Kutta method. Numerical results for different solitary wave solutions including elastic and inelastic collisions, fusion of two solitons and with periodic solutions confirm the excellent long time behavior of the multi-symplectic integrator by preserving global energy, momentum and mass.
dc.identifier.urihttps://hdl.handle.net/20.500.14411/6317
dc.institutionauthorAydın, Ayhan
dc.language.isoen
dc.publisherJournal of Computational and Applied Mathematics
dc.subjectmathematics
dc.titleLobatto IIIA–IIIB discretization of the strongly coupled nonlinear Schrödinger equation
dc.typeArticle
dspace.entity.typePublication
relation.isAuthorOfPublication51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isAuthorOfPublication.latestForDiscovery51e6d006-8fef-4668-ab1b-0e945155d8ae
relation.isOrgUnitOfPublication31ddeb89-24da-4427-917a-250e710b969c
relation.isOrgUnitOfPublication.latestForDiscovery31ddeb89-24da-4427-917a-250e710b969c

Files