Thermally highly stable polyhedral oligomeric silsesquioxane (POSS)-sulfur based hybrid inorganic/organic polymers: synthesis, characterization and removal of mercury ion

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Soc Chemistry

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Chemical Engineering
(2010)
Established in 2010, and aiming to train the students with the capacity to meet the demands of the 21st Century, the Chemical Engineering Department provides a sound chemistry background through intense coursework and laboratory practices, along with fundamental courses such as Physics and Mathematics within the freshman and sophomore years, following preparatory English courses.In the final two years of the program, engineering courses are offered with laboratory practice and state-of-the-art simulation programs, combining theory with practice.

Journal Issue

Abstract

Elemental sulfur was copolymerized with octavinyl polyhedral oligomeric silsesquioxane (OV-POSS) cages in diglyme solution via the inverse vulcanization method and characterized using NMR and FTIR spectroscopic techniques. The polysulfur copolymer called poly(sulfur-random-octavinyl polyhedral oligomeric silsesquioxane) (poly(S-r-OV-POSS)) was cured successfully sequentially at 170, 200 and 230 degrees C without changing the structure of the POSS cages in the polymer backbone. Highly crosslinked poly(S-r-OV-POSS) polymer cured at 200 and 230 degrees C exhibited high thermal stability at high temperatures; the loss of the samples was only 10% weight at 400 degrees C and 27% at 800 degrees C. Finally, the feasibility of poly(S-r-OV-POSS) as an adsorbent for the removal of Hg(ii) ions, as an example of a toxic heavy metal, from an aqueous solution was investigated. Optimization of the pH of the solution and contact time was performed and almost all Hg(ii) ions were collected from the aqueous solution at pH = 7 in 1 h (99% adsorption).

Description

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Fields of Science

Citation

8

WoS Q

Q1

Scopus Q

Q1

Source

Volume

13

Issue

35

Start Page

5152

End Page

5158

Collections