On the Mean Residual Life of a <i>k</I>-out-of-<i>n< System With a Single Cold Standby Component

No Thumbnail Available

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Bv

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Events

Abstract

The concept of mean residual life is one of the most important characteristics that has been widely used in dynamic reliability analysis. It is a useful tool for investigating ageing properties of technical systems. In this paper, we define and study three different mean residual life functions for k-out-of-n:G system with a single cold standby component. In particular, we obtain explicit expressions for the corresponding functions using distributions of order statistics. We also provide some stochastic ordering results associated with the lifetime of a system. We illustrate the results for various lifetime distributions. (c) 2012 Elsevier B.V. All rights reserved.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Reliability, Mean residual life, Order statistics, Stochastic ordering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Source

Volume

222

Issue

2

Start Page

273

End Page

277

Collections