Forecasting Direction of Bist 100 Index: an Integrated Machine Learning Approach

dc.contributor.author Ünlü,K.D.
dc.contributor.author Potas,N.
dc.contributor.author Yılmaz,M.
dc.contributor.other Civil Engineering
dc.contributor.other Industrial Engineering
dc.contributor.other 06. School Of Engineering
dc.contributor.other 01. Atılım University
dc.date.accessioned 2024-07-05T15:46:10Z
dc.date.available 2024-07-05T15:46:10Z
dc.date.issued 2021
dc.description.abstract In recent years trends in analyzing and forecasting financial time series moves from classical Box-Jenkins methodology to machine learning algorithms because of the non-linearity and non-stationary of the time series. In this study, we employed a machine learning algorithm called support vector machine to predict the daily price direction of BIST 100 index. In addition, we use random forest algorithm for feature selection and showed that by removing some features from the model, performance of the model increases. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG. en_US
dc.identifier.doi 10.1007/978-3-030-74057-3_5
dc.identifier.isbn 978-303074056-6
dc.identifier.issn 2213-8684
dc.identifier.scopus 2-s2.0-85113755824
dc.identifier.uri https://doi.org/10.1007/978-3-030-74057-3_5
dc.identifier.uri https://hdl.handle.net/20.500.14411/4025
dc.language.iso en en_US
dc.publisher Springer Science and Business Media B.V. en_US
dc.relation.ispartof Springer Proceedings in Complexity -- 7th International Symposium on Chaos, Complexity and Leadership, ICCLS 2020 -- 29 October 2020 through 31 October 2020 -- Virtual, Online -- 263269 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Feature selection en_US
dc.subject Financial time series en_US
dc.subject ISE 100 en_US
dc.subject Random forest en_US
dc.subject Support vector machine en_US
dc.title Forecasting Direction of Bist 100 Index: an Integrated Machine Learning Approach en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Yılmaz, Meriç
gdc.author.institutional Ünlü, Kamil Demirberk
gdc.author.scopusid 57210105250
gdc.author.scopusid 36523620300
gdc.author.scopusid 36464524900
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Atılım University en_US
gdc.description.departmenttemp Ünlü K.D., Atilim University, Ankara, Turkey; Potas N., Ankara Hacı Bayram Veli University, Ankara, Turkey; Yılmaz M., Ankara University, Ankara, Turkey en_US
gdc.description.endpage 46 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 33 en_US
gdc.identifier.openalex W3192011522
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6235238E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.466129E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.738
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 1
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
relation.isAuthorOfPublication 9ffb7c9c-733c-406c-891a-31d933a5152e
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery 9ffb7c9c-733c-406c-891a-31d933a5152e
relation.isOrgUnitOfPublication 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication 4abda634-67fd-417f-bee6-59c29fc99997
relation.isOrgUnitOfPublication 50be38c5-40c4-4d5f-b8e6-463e9514c6dd
relation.isOrgUnitOfPublication.latestForDiscovery 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections