Forecasting Direction of BIST 100 Index: An Integrated Machine Learning Approach
dc.authorscopusid | 57210105250 | |
dc.authorscopusid | 36523620300 | |
dc.authorscopusid | 36464524900 | |
dc.contributor.author | Ünlü,K.D. | |
dc.contributor.author | Potas,N. | |
dc.contributor.author | Yılmaz,M. | |
dc.contributor.other | Civil Engineering | |
dc.contributor.other | Industrial Engineering | |
dc.date.accessioned | 2024-07-05T15:46:10Z | |
dc.date.available | 2024-07-05T15:46:10Z | |
dc.date.issued | 2021 | |
dc.department | Atılım University | en_US |
dc.department-temp | Ünlü K.D., Atilim University, Ankara, Turkey; Potas N., Ankara Hacı Bayram Veli University, Ankara, Turkey; Yılmaz M., Ankara University, Ankara, Turkey | en_US |
dc.description.abstract | In recent years trends in analyzing and forecasting financial time series moves from classical Box-Jenkins methodology to machine learning algorithms because of the non-linearity and non-stationary of the time series. In this study, we employed a machine learning algorithm called support vector machine to predict the daily price direction of BIST 100 index. In addition, we use random forest algorithm for feature selection and showed that by removing some features from the model, performance of the model increases. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1007/978-3-030-74057-3_5 | |
dc.identifier.endpage | 46 | en_US |
dc.identifier.isbn | 978-303074056-6 | |
dc.identifier.issn | 2213-8684 | |
dc.identifier.scopus | 2-s2.0-85113755824 | |
dc.identifier.startpage | 33 | en_US |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-74057-3_5 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14411/4025 | |
dc.institutionauthor | Yılmaz, Meriç | |
dc.institutionauthor | Ünlü, Kamil Demirberk | |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media B.V. | en_US |
dc.relation.ispartof | Springer Proceedings in Complexity -- 7th International Symposium on Chaos, Complexity and Leadership, ICCLS 2020 -- 29 October 2020 through 31 October 2020 -- Virtual, Online -- 263269 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Feature selection | en_US |
dc.subject | Financial time series | en_US |
dc.subject | ISE 100 | en_US |
dc.subject | Random forest | en_US |
dc.subject | Support vector machine | en_US |
dc.title | Forecasting Direction of BIST 100 Index: An Integrated Machine Learning Approach | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 9ffb7c9c-733c-406c-891a-31d933a5152e | |
relation.isAuthorOfPublication | b46371b5-7e14-4c8e-a10a-85f150b356b2 | |
relation.isAuthorOfPublication.latestForDiscovery | 9ffb7c9c-733c-406c-891a-31d933a5152e | |
relation.isOrgUnitOfPublication | 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d | |
relation.isOrgUnitOfPublication | 12c9377e-b7fe-4600-8326-f3613a05653d | |
relation.isOrgUnitOfPublication.latestForDiscovery | 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d |