Forecasting Direction of BIST 100 Index: An Integrated Machine Learning Approach

dc.authorscopusid57210105250
dc.authorscopusid36523620300
dc.authorscopusid36464524900
dc.contributor.authorÜnlü,K.D.
dc.contributor.authorPotas,N.
dc.contributor.authorYılmaz,M.
dc.contributor.otherCivil Engineering
dc.contributor.otherIndustrial Engineering
dc.date.accessioned2024-07-05T15:46:10Z
dc.date.available2024-07-05T15:46:10Z
dc.date.issued2021
dc.departmentAtılım Universityen_US
dc.department-tempÜnlü K.D., Atilim University, Ankara, Turkey; Potas N., Ankara Hacı Bayram Veli University, Ankara, Turkey; Yılmaz M., Ankara University, Ankara, Turkeyen_US
dc.description.abstractIn recent years trends in analyzing and forecasting financial time series moves from classical Box-Jenkins methodology to machine learning algorithms because of the non-linearity and non-stationary of the time series. In this study, we employed a machine learning algorithm called support vector machine to predict the daily price direction of BIST 100 index. In addition, we use random forest algorithm for feature selection and showed that by removing some features from the model, performance of the model increases. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.identifier.citation0
dc.identifier.doi10.1007/978-3-030-74057-3_5
dc.identifier.endpage46en_US
dc.identifier.isbn978-303074056-6
dc.identifier.issn2213-8684
dc.identifier.scopus2-s2.0-85113755824
dc.identifier.startpage33en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-74057-3_5
dc.identifier.urihttps://hdl.handle.net/20.500.14411/4025
dc.institutionauthorYılmaz, Meriç
dc.institutionauthorÜnlü, Kamil Demirberk
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media B.V.en_US
dc.relation.ispartofSpringer Proceedings in Complexity -- 7th International Symposium on Chaos, Complexity and Leadership, ICCLS 2020 -- 29 October 2020 through 31 October 2020 -- Virtual, Online -- 263269en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFeature selectionen_US
dc.subjectFinancial time seriesen_US
dc.subjectISE 100en_US
dc.subjectRandom foresten_US
dc.subjectSupport vector machineen_US
dc.titleForecasting Direction of BIST 100 Index: An Integrated Machine Learning Approachen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication9ffb7c9c-733c-406c-891a-31d933a5152e
relation.isAuthorOfPublicationb46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery9ffb7c9c-733c-406c-891a-31d933a5152e
relation.isOrgUnitOfPublication01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections