Forecasting Direction of Bist 100 Index: an Integrated Machine Learning Approach

dc.authorscopusid 57210105250
dc.authorscopusid 36523620300
dc.authorscopusid 36464524900
dc.contributor.author Ünlü,K.D.
dc.contributor.author Potas,N.
dc.contributor.author Yılmaz,M.
dc.contributor.other Civil Engineering
dc.contributor.other Industrial Engineering
dc.date.accessioned 2024-07-05T15:46:10Z
dc.date.available 2024-07-05T15:46:10Z
dc.date.issued 2021
dc.department Atılım University en_US
dc.department-temp Ünlü K.D., Atilim University, Ankara, Turkey; Potas N., Ankara Hacı Bayram Veli University, Ankara, Turkey; Yılmaz M., Ankara University, Ankara, Turkey en_US
dc.description.abstract In recent years trends in analyzing and forecasting financial time series moves from classical Box-Jenkins methodology to machine learning algorithms because of the non-linearity and non-stationary of the time series. In this study, we employed a machine learning algorithm called support vector machine to predict the daily price direction of BIST 100 index. In addition, we use random forest algorithm for feature selection and showed that by removing some features from the model, performance of the model increases. © 2021, The Author(s), under exclusive license to Springer Nature Switzerland AG. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-3-030-74057-3_5
dc.identifier.endpage 46 en_US
dc.identifier.isbn 978-303074056-6
dc.identifier.issn 2213-8684
dc.identifier.scopus 2-s2.0-85113755824
dc.identifier.startpage 33 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-74057-3_5
dc.identifier.uri https://hdl.handle.net/20.500.14411/4025
dc.institutionauthor Yılmaz, Meriç
dc.institutionauthor Ünlü, Kamil Demirberk
dc.language.iso en en_US
dc.publisher Springer Science and Business Media B.V. en_US
dc.relation.ispartof Springer Proceedings in Complexity -- 7th International Symposium on Chaos, Complexity and Leadership, ICCLS 2020 -- 29 October 2020 through 31 October 2020 -- Virtual, Online -- 263269 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Feature selection en_US
dc.subject Financial time series en_US
dc.subject ISE 100 en_US
dc.subject Random forest en_US
dc.subject Support vector machine en_US
dc.title Forecasting Direction of Bist 100 Index: an Integrated Machine Learning Approach en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 9ffb7c9c-733c-406c-891a-31d933a5152e
relation.isAuthorOfPublication b46371b5-7e14-4c8e-a10a-85f150b356b2
relation.isAuthorOfPublication.latestForDiscovery 9ffb7c9c-733c-406c-891a-31d933a5152e
relation.isOrgUnitOfPublication 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d
relation.isOrgUnitOfPublication 12c9377e-b7fe-4600-8326-f3613a05653d
relation.isOrgUnitOfPublication.latestForDiscovery 01fb4c5b-b45f-40c0-9a74-f0b3b6265a0d

Files

Collections