Design and Characterization of the Ge/Ga<sub>2< Heterojunction

Loading...
Publication Logo

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Top 10%
Popularity
Top 10%

Research Projects

Journal Issue

Abstract

In this work, the formation and properties of Ga2S3 thin films deposited onto polycrystalline Ge substrates are studied by means of scanning electron microscopy, energy dispersive x-ray analyzer, Raman spectroscopy, x-ray diffraction techniques, ultraviolet-visible light spectrophotometry in the range of 300-1100 nm and by ac signal power spectroscopy in the range of 0.2-3.0 GHz. The first four techniques allowed the determining of the stoichiometry, the vibrational frequencies, the lattice parameters, the plane orientations, the strain and the defect density for the interface. In addition, it was observed that the Ge/Ga2S3 interface exhibited conduction and valence band offsets of 0.83 eV and 0.82 eV, respectively, and the real part of the dielectric spectra experimentally exhibited four resonance peaks centered at frequencies above 357 THz. Moreover, the computational analysis of the imaginary part of the dielectric constant via the Drude-Lorentz model has shown that the interface wave filtering properties are controlled by the electron-plasmon coupling with plasma frequencies in the range of 1.33-2.30 GHz. The drift mobility of electrons in this range was found to be 15.61 cm(2)/Vs. The real ability of the interface to control wave propagation was confirmed with ac signals propagating tests. The plasmonic features of the interface nominate it for use in microwave cavities and as wireless terahertz receivers.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Al Garni, Sabah/0000-0002-4995-8231

Keywords

Ge substrate, Ga2S3, p-n junction, terahertz, plasmon devices

Fields of Science

0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
13

Source

Journal of Electronic Materials

Volume

46

Issue

8

Start Page

4848

End Page

4856

Collections

PlumX Metrics
Citations

CrossRef : 2

Scopus : 15

Captures

Mendeley Readers : 9

SCOPUS™ Citations

15

checked on Feb 18, 2026

Web of Science™ Citations

16

checked on Feb 18, 2026

Page Views

1

checked on Feb 18, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
1.45352793

Sustainable Development Goals

SDG data is not available