Design and Characterization of the Ge/Ga<sub>2< Heterojunction

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this work, the formation and properties of Ga2S3 thin films deposited onto polycrystalline Ge substrates are studied by means of scanning electron microscopy, energy dispersive x-ray analyzer, Raman spectroscopy, x-ray diffraction techniques, ultraviolet-visible light spectrophotometry in the range of 300-1100 nm and by ac signal power spectroscopy in the range of 0.2-3.0 GHz. The first four techniques allowed the determining of the stoichiometry, the vibrational frequencies, the lattice parameters, the plane orientations, the strain and the defect density for the interface. In addition, it was observed that the Ge/Ga2S3 interface exhibited conduction and valence band offsets of 0.83 eV and 0.82 eV, respectively, and the real part of the dielectric spectra experimentally exhibited four resonance peaks centered at frequencies above 357 THz. Moreover, the computational analysis of the imaginary part of the dielectric constant via the Drude-Lorentz model has shown that the interface wave filtering properties are controlled by the electron-plasmon coupling with plasma frequencies in the range of 1.33-2.30 GHz. The drift mobility of electrons in this range was found to be 15.61 cm(2)/Vs. The real ability of the interface to control wave propagation was confirmed with ac signals propagating tests. The plasmonic features of the interface nominate it for use in microwave cavities and as wireless terahertz receivers.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Al Garni, Sabah/0000-0002-4995-8231

Keywords

Ge substrate, Ga2S3, p-n junction, terahertz, plasmon devices

Turkish CoHE Thesis Center URL

Fields of Science

Citation

14

WoS Q

Q3

Scopus Q

Source

Volume

46

Issue

8

Start Page

4848

End Page

4856

Collections