Antisolvent-fumigated grain growth of active layer for efficient perovskite solar cells

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

High efficiency of perovskite solar cell can be obtained through various approaches, including materials and interface engineering, device modification and fabrication techniques. In all approaches, the quality of the perovskite layer has a significant impact on the efficiency of the perovskite solar cell. Antisolvent dripping is widely used in almost all fabrication methodologies to achieve a high-quality perovskite layer. However, in the conventional antisolvent dripping, there are several factors (antisolvent volume, time and point of dripping, etc.) to be strictly followed. Due to these difficult and critical tricks, researchers often get perovskite layers with pinholes, small grains, and wide grain boundaries that deteriorate the performance of the perovskite solar cells. In order to produce perovskite films with large-scale grains, narrow boundaries and smooth surface morphology, a sealed antisolvent-fumigated process is implemented. There is no need to make any substantial efforts to achieve optimal conditions for the fabrication of high-quality perovskite layers using the antisolvent-fumigated strategy. Consequently, the efficiency of perovskite solar cell improves dramatically from 18.65% to 21.45%. Our findings present a new and convenient method for fabricating highly efficient perovskite solar cells.

Description

Sajid, Sajid/0000-0002-1165-1365; Khan, Danish/0000-0002-6754-9757; Khan, Suliman/0000-0003-0069-4025; Park, Jongee/0000-0003-1415-6906; Khan, Ayub/0000-0002-0288-1118

Keywords

Antisolvent fumigation, Grain size, Smooth morphology, Grain boundary, Perovskite solar cell

Turkish CoHE Thesis Center URL

Citation

12

WoS Q

Q2

Scopus Q

Q1

Source

Volume

225

Issue

Start Page

1001

End Page

1008

Collections