Temperature and Magnetic Field Effects on the Carrier Density and Hall Mobility of Boron-Doped Tl-Ba Superconductor

No Thumbnail Available

Date

2005

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Science Sa

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Boron-doped T1-based superconductor was prepared by adding an amount of 1 wt.% B to the Tl1.8Ba2Ca2.2Cu3Ox, compound. The usual solid-state reaction method has been applied under optimum conditions. The X-ray data of the sample show a tetragonal structure with a high ratio of T1-2223 superconducting phase. The sample showed a transition at 125 K and the zero resistance was observed at 120 K. The magnetic field and temperature effects on the normal state electrical resistivity, carrier density, and Hall mobility have been investigated. Both temperature and magnetic field significantly affect the resistivity behavior. The zero field resistivity was found to vary exponentially with temperature with a slope revealing activation energy of 27.5 meV. When the magnetic field is applied, the resistivity varied up-normally in the temperature region of 160-240 K. The temperature dependent carrier concentration calculated from the Hall coefficient data varied linearly with the applied magnetic field. This effect was attributed to the increase in the hole effective mass upon field increment. The temperature-dependent carrier concentration data at several applied fields were analyzed by the single donor-single acceptor model to obtain the values of effective masses. The temperature and magnetic field dependent normal state Hall mobility was found to be limited by the scattering of acoustic phonons. (c) 2005 Elsevier B.V. All rights reserved.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Kayed, Tarek/0000-0003-3482-4166

Keywords

thallium-based superconductors, Hall effect, doping

Turkish CoHE Thesis Center URL

Fields of Science

0103 physical sciences, 02 engineering and technology, 0210 nano-technology, 01 natural sciences

Citation

WoS Q

Q1

Scopus Q

OpenCitations Logo
OpenCitations Citation Count
7

Source

Journal of Alloys and Compounds

Volume

402

Issue

1-2

Start Page

5

End Page

11

Collections

PlumX Metrics
Citations

CrossRef : 5

Scopus : 8

Captures

Mendeley Readers : 7

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.55334485

Sustainable Development Goals

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo