Influence of void fraction on BWR spent fuel direct recycling scenario

No Thumbnail Available

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Pergamon-elsevier Science Ltd

Research Projects

Organizational Units

Organizational Unit
Department of Mechanical Engineering
(2016)
The Mechanical Engineering Doctoral Program has started in 2016-2017 academic year. We have highly qualified teaching and research faculty members and strong research infrastructure in the department for graduate work. Research areas include computational and experimental research in fluid and solid mechanics, heat and mass transfer, advanced manufacturing, composites and other advanced materials. Our fundamental mission is to train engineers who are able to work with advanced technology, create innovative approaches and authentic designs, apply research methods effectively, conduct research and develop high quality methods and products in space, aviation, defense, medical and automotive industries, with a contemporary education and research infrastructure.

Journal Issue

Abstract

Preliminary study on influence of changing void fraction (VF) on SUPEL (Straight Utilization of sPEnt LWR fuel in LWR system) scenario for boiling water reactor (BWR) spent fuel direct recycling scheme has been carried out. Several VF values of BWR have been investigated to determine the criticality of reactor. The VF values range from 20% to 60%. The fraction of spent fuel to the total loaded fuel was changed from 5% to 20%. The required uranium enrichment for criticality becomes higher with the increasing of VF as well as the enlarging of the fraction of spent fuel in loaded fuel. The neutron spectra become harder with the augmenting of VF. The plutonium and minor actinides isotopes are produced more in the reactor. Copyright (C) 2015, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Description

Kurt, Erol/0000-0002-3615-6926; Su'ud, Zaki/0000-0001-8907-9824

Keywords

BWR, Void fraction, Spent fuel, Direct recycling, SUPEL scenario

Turkish CoHE Thesis Center URL

Citation

2

WoS Q

Q1

Scopus Q

Source

4th International Conference on Nuclear and Renewable Energy Resources (NURER) -- OCT 26-29, 2014 -- Antalya, TURKEY

Volume

40

Issue

44

Start Page

15172

End Page

15178

Collections