Control of the Crystal Growth Shape in CH<sub>3</sub>NH<sub>3</sub>PbBr<sub>3</sub> Perovskite Materials

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Amer Scientific Publishers

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

CH3NH3PbBr3 (MAPbBr(3)) materials with perovskite structure were grown by a two-step process using Pb(CH3COO)(2). 3H(2)O and methyl amine bromide (MABr). By changing the concentration of MABr in isopropyl alcohol (IPA) solvent and the annealing temperature, the shape of CH3NH3PbBr3 materials can be controlled to afford nanocubes, nanowires, nanorods, and wrinkled structures. MAPbBr3 with single cubic structure was obtained at a MABr concentration of 3 mg/mL in IPA, and a nanorod array of MAPbBr3 was realized at a MABr concentration of 9 mg/mL in IPA at room temperature. Uniformly wrinkled shapes were formed after the synthesis temperature was increased to 60 and 90 degrees C. The X-ray diffraction patterns, Fourier transform infrared spectra, and X-ray photoelectron spectra of CH3NH3PbBr3 nanorods confirmed that the pure perovskite phase was obtained by dipping Pb(CH3COO)(2). 3H(2)O in MABr/IPA solution. The optical bandgap of the CH3NH3PbBr3 nanorods was estimated from the Tauc plot as 2.2 eV. The evolution of perovskite shapes is expected to lead to improvements in the electrical properties and surface contact, which are important factors for realizing high-performance devices.

Description

Park, Jongee/0000-0003-1415-6906; Ozturk, Abdullah/0000-0002-1525-1561; Ozturk, Abdullah/0000-0002-1525-1561; Kim, SOO YOUNG/0000-0002-0685-7991; Le, Quyet Van/0000-0002-4313-301X

Keywords

CH3NH3PbBr3, Perovskite, Crystal Shape, Structure

Turkish CoHE Thesis Center URL

Fields of Science

Citation

13

WoS Q

Scopus Q

Source

Volume

17

Issue

11

Start Page

8169

End Page

8174

Collections