Effect of Ti-V and Nb Addition on the Properties of Almg7cu1.2 Alloy

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Int Publ Ag

Open Access Color

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

In the development of aluminum casting alloys, considerable attention is given to the impact of various alloying elements, with numerous studies exploring how these elements influence the material's properties. However, the selection of alloying elements alone does not ensure optimal final quality. The casting process and melt treatment methods also play a critical role in achieving a defect-free structure, particularly when paired with defect characterization and final property assessment. Therefore, it is essential to investigate the interplay between alloying element choice, melt treatment, and defect evaluation in tandem. In this study, copper and magnesium main alloying elements have been chosen along with master alloys of Ti-V-Nb as grain refiners for the aluminum cast alloy. Phase formations have been investigated by simulated phase diagrams. Casting experiments have been done using a tilt pouring method into sand molds, and small bubble degassing equipment has been used to ensure the alloying and melt quality satisfying required mechanical strength. Composition and alloying have been validated by spectral analysis and XRF measurements. Microstructural analyses have been performed by both digital microscopy and scanning electron microscopy. EDS mappings have been carried out for alloying elements distributions. Internal defect distribution and defect structure have been evaluated by computed tomography (CT) scans. Both as-cast and heat-treated specimens have undergone tensile and hardness tests to characterize the mechanical behaviors. CT scans and mechanical behaviors have beencorrelated, and defect metrics have been investigated and classified according to defect surface, defect volumes and projected areas on XY-XZ-YZ planes. Contour maps of defect metrics and tensile properties have been analyzed to generate input to finite element simulations for latter stages studies, and correlation of strength-defect regressions has yielded parametric results to understand structural defects-mechanical performance relations. GTN and Beremin localization models capable of depicting material behavior in the presence of defects have been used to link the experimental and virtual validation assessments. In view of test results, a maximum of 0.125 wt% Nb content in AlMgCu-TiV alloy has been proposed having a tensile strength reaching 300 MPa-7.5% elongation at 0.75% Nb content with grain refinement effect owing to Al-Nb, Al-Ti, Al-V aluminide particles and good dispersion of Nb, Ti, V elements on the microstructure as assessed by EDS mapping. CT scan reconstruction images and metrics have successfully connected tensile strength and elongation with defect volume and defect surface area for the proposed alloy. In this context, the volume and surface area of defects have been evaluated as critical metrics in evaluating the mechanical properties of Al7MgCu1.2 cast alloys. Defect localization and failure point detection during plastic deformation zone have been demonstrated by Beremin model which can lead to future studies leveraging these metrics to validate material strength using damage models such as Gurson, GTN or Beremin for crack initiation and propagation methodologies.

Description

Keywords

Casting, Aluminum, Grain Refiners, Niobium, Titanium, Vanadium, Factsage, Reduced Pressure Tests, Mechanical Properties, Computed Tomography, Gtn Model, Finite Elements, Beremin Model

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q2
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

International Journal of Metalcasting

Volume

Issue

Start Page

End Page

Collections

PlumX Metrics
Citations

Scopus : 1

Captures

Mendeley Readers : 2

SCOPUS™ Citations

1

checked on Jan 25, 2026

Web of Science™ Citations

1

checked on Jan 25, 2026

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
6.92871482

Sustainable Development Goals

1

NO POVERTY
NO POVERTY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo