Surface Patterning of Poly(ε-Caprolactone) Scaffolds by Electrospinning for Monitoring Cell Biomass Behavior
No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Open Access Color
Green Open Access
No
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
The aim of this work was to produce three-dimensional fibrous surface patterns of poly(epsilon-caprolactone) (PCL), onto two-dimensional smooth solvent cast PCL surfaces with an electrospinning method by using a mask/stencil for monitoring cell biomass behavior. The characterizations of produced scaffolds were done by thickness measurements, scanning electron microscopy (SEM) analyses, contact angle (CA) measurements, Fourier-transform infrared spectroscopy (FTIR), and mechanical tests. According to SEM micrographs, all of the electrospun scaffold surfaces exhibited bead-free and uniform morphology while solvent cast surfaces were smooth and nonporous. CA measurements revealed that the solvent cast surfaces had moderate hydrophilicity (similar to 60 degrees) while electrospun regions had a more hydrophobic character (similar to 110 degrees for fully electrospun surfaces and similar to 85 degrees for electrospun patterns). Mechanical testing showed the produced scaffolds had a brittle character. Moreover, cell culture studies were performed with mouse fibroblast (L929) cells for 7 days period, and cell attachment assay, MTT assay, fluorescence, and SEM analyses were done. Cell culture studies indicated that the solvent cast and electrospun patterns have different characteristics for cell behavior. Thus, cell movement, attachment, and proliferation can be directed and monitored by obtaining different surface topographies in a single substrate surface. Based on the results of this study, it was found that patterns consisting of polymeric nanofiber structures can also be created directly by the electrospinning method.
Description
Keywords
Cell movement, Poly(epsilon-caprolactone), Electrospinning, Solvent casting, Surface patterns
Turkish CoHE Thesis Center URL
Fields of Science
02 engineering and technology, 0210 nano-technology, 01 natural sciences, 0104 chemical sciences
Citation
WoS Q
Q3
Scopus Q
Q2

OpenCitations Citation Count
1
Source
Journal of Polymer Research
Volume
29
Issue
8
Start Page
End Page
PlumX Metrics
Citations
Scopus : 1
Captures
Mendeley Readers : 1
Google Scholar™

OpenAlex FWCI
0.13037354
Sustainable Development Goals
1
NO POVERTY

3
GOOD HEALTH AND WELL-BEING

4
QUALITY EDUCATION

5
GENDER EQUALITY

7
AFFORDABLE AND CLEAN ENERGY

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

16
PEACE, JUSTICE AND STRONG INSTITUTIONS

17
PARTNERSHIPS FOR THE GOALS


