Surface patterning of poly(ε-caprolactone) scaffolds by electrospinning for monitoring cell biomass behavior

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Research Projects

Organizational Units

Organizational Unit
Metallurgical and Materials Engineering
(2004)
The main fields of operation for Metallurgical and Materials Engineering are production of engineering materials, defining and improving their features, as well as developing new materials to meet the expectations at every aspect of life and the users from these aspects. Founded in 2004 and graduated its 10th-semester alumni in 2018, our Department also obtained MÜDEK accreditation in the latter year. Offering the opportunity to hold an internationally valid diploma through the accreditation in question, our Department has highly qualified and experienced Academic Staff. Many of the courses offered at our Department are supported with various practice sessions, and internship studies in summer. This way, we help our students become better-equipped engineers for their future professional lives. With the Cooperative Education curriculum that entered into effect in 2019, students may volunteer to work at contracted companies for a period of six months with no extensions to their period of study.

Journal Issue

Abstract

The aim of this work was to produce three-dimensional fibrous surface patterns of poly(epsilon-caprolactone) (PCL), onto two-dimensional smooth solvent cast PCL surfaces with an electrospinning method by using a mask/stencil for monitoring cell biomass behavior. The characterizations of produced scaffolds were done by thickness measurements, scanning electron microscopy (SEM) analyses, contact angle (CA) measurements, Fourier-transform infrared spectroscopy (FTIR), and mechanical tests. According to SEM micrographs, all of the electrospun scaffold surfaces exhibited bead-free and uniform morphology while solvent cast surfaces were smooth and nonporous. CA measurements revealed that the solvent cast surfaces had moderate hydrophilicity (similar to 60 degrees) while electrospun regions had a more hydrophobic character (similar to 110 degrees for fully electrospun surfaces and similar to 85 degrees for electrospun patterns). Mechanical testing showed the produced scaffolds had a brittle character. Moreover, cell culture studies were performed with mouse fibroblast (L929) cells for 7 days period, and cell attachment assay, MTT assay, fluorescence, and SEM analyses were done. Cell culture studies indicated that the solvent cast and electrospun patterns have different characteristics for cell behavior. Thus, cell movement, attachment, and proliferation can be directed and monitored by obtaining different surface topographies in a single substrate surface. Based on the results of this study, it was found that patterns consisting of polymeric nanofiber structures can also be created directly by the electrospinning method.

Description

Keywords

Cell movement, Poly(epsilon-caprolactone), Electrospinning, Solvent casting, Surface patterns

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Scopus Q

Q2

Source

Volume

29

Issue

8

Start Page

End Page

Collections