On the First Time of Ruin in Two-Dimensional Discrete Time Risk Model With Dependent Claim Occurrences

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Taylor & Francis inc

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Events

Abstract

This article is concerned with a two-dimensional discrete time risk model based on exchangeable dependent claim occurrences. In particular, we obtain a recursive expression for the finite time non ruin probability under such a dependence among claim occurrences. For an illustration, we define a bivariate compound beta-binomial risk model and present numerical results on this model by comparing the corresponding results of the bivariate compound binomial risk model.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Bivariate risk process, Compound beta-binomial model, Dependence, Exchangeability

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q4

Scopus Q

Source

Volume

47

Issue

9

Start Page

2251

End Page

2258

Collections