Investigation of the performance of high-temperature electrochemical hydrogen purification from reformate gases

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Research Projects

Organizational Units

Organizational Unit
Mechanical Engineering
(2009)
The Atılım University Department of Mechanical Engineering started education in 2009, and offers graduate and doctorate degree programs, in addition to its undergraduate program. Our main goal is to graduate Mechanical Engineers who have the skills to design, analyze and synthesize; who are able to convert advanced technology and innovations into products; and who have the culture of research and cooperation. While our graduates reach this goal, they adopt the principle of life-long learning, and develop a sense of entrepreneurship, paying importance to professional ethics. With a curriculum prepared in line with the criteria of MÜDEK, we help our students develop themselves professionally, and socially. Graduates of mechanical engineering may be employed in many sectors and in a wide array of positions. Able to work under any field that involves production and energy conversion, graduates of the department may also gain expertise in fields such as aviation, automotive, or material engineering.
Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

In the present work, the purification of hydrogen from a hydrogen/carbon dioxide/carbon monoxide (H-2:CO2:CO) mixture by a high-temperature electrochemical purification (HT-ECHP) system is examined. Electrochemical H-2 purification experiments were carried out in the temperature range of 140-180 degrees C. The effects of the molar ratio of the gases in the mixture (H-2:CO2:CO-75:25:0, H-2:CO2:CO-72:26:2,0 H-2:CO2:CO-75:22:3, H-2:CO2:CO-75:20:5, H-2:CO2:CO-97:0:3, H-2:CO2:CO-95:0:5) and the operating temperature on the electrochemical H-2 separation were investigated. As a result of the electrochemical H-2 purification experiments, it was determined that the operating temperature is the most important parameter affecting the performance. According to the results obtained, H-2 purity of 99.999% was achieved at 160 degrees C with the reformate gas mixture containing 72% H-2, 26% CO2, and 2% CO by volume. According to the polarization curves of the gas mixtures containing CO, high current densities at low voltage were reached at 180 degrees C, and it was observed that the performance increased as the temperature increased, whereas the gas mixture without CO gave the best performance at 160 degrees C.

Description

Colpan, Can Ozgur/0000-0003-0855-3147; DEVRIM, YILSER/0000-0001-8430-0702; Bulanik Durmus, Gizem Nur/0000-0001-8457-8093

Keywords

electrochemical hydrogen purification, high temperature, hydrogen, hydrogen separation, polybenzimidazole, reformate gas

Turkish CoHE Thesis Center URL

Citation

5

WoS Q

Q1

Scopus Q

Q1

Source

Volume

46

Issue

8

Start Page

11443

End Page

11455

Collections