Rock mass response model for circular openings

No Thumbnail Available

Date

2007

Journal Title

Journal ISSN

Volume Title

Publisher

Canadian Science Publishing

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Civil Engineering
Civil Engineering Department of Atılım University, this opportunity can be attained by two Master of Science programs (with thesis or non-thesis). These programs are divided into the following subdivisions: 1) Construction Management, 2) Materials of Construction, 3) Geotechnical Engineering, 4) Hydromechanics and Water Resources Engineering, 5) Structural Engineering and Mechanics, and 6) Transportation Engineering. So, you can find among these alternatives, a subdiscipline that focuses on your interests and allows you to work toward your career goals. Civil Engineering Department of Atılım University which has a friendly faculty comprised of members with degrees from renowned international universities, laboratories for both educational and research purposes, and other facilities like computer infrastructure and classrooms well-suited for a good graduate education.

Journal Issue

Abstract

The main parameters affecting the failure and deformation state of the rock mass around a circular opening are the level of vertical and horizontal in situ stresses, the characteristics of the rock mass, the diameter of the opening, and the support pressure. The influence of all these parameters on the stress-induced final deformations around circular openings was investigated by a finite difference based two-dimensional numerical simulation for both hydrostatic and nonhydrostatic stress field conditions. From the results of the parametric studies, the variation of tunnel strain versus the ratio of uniaxial compressive strength of the rock mass to in situ vertical stress and the ratio of radial support pressure to in situ vertical stress for fair quality and poor quality rock masses was statistically analysed. As a result of the three-dimensional nonlinear regression analysis and surface curve fitting process by means of a large number of models, a best-fit model with the best correlation with these dimensionless parameters was proposed for calculating tunnel strains and ground response curves. Specific charts were created to highlight the influence of parameters on the deformation response of the openings to various support pressures.

Description

SARI, Yasin Dursun/0000-0002-2859-7465

Keywords

numerical modelling, circular openings, ground response curve, finite difference, FLAC

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Source

Volume

44

Issue

7

Start Page

891

End Page

904

Collections

SCOPUS™ Citations

8

checked on Oct 24, 2025

Web of Science™ Citations

7

checked on Oct 24, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

SDG data is not available