On the lifetime behavior of a discrete time shock model

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Events

Abstract

In this article, we study a shock model in which the shocks occur according to a binomial process, i.e. the interarrival times between successive shocks follow a geometric distribution with mean 1/p. According to the model, the system fails when the time between two consecutive shocks is less than a prespecified level. This is the discrete time version of the so-called delta-shock model which has been previously studied for the continuous case. We obtain the probability mass function and probability generating function of the system's lifetime. We also present an extension of the results to the case where the shock occurrences are dependent in a Markovian fashion. (C) 2012 Elsevier B.V. All rights reserved.

Description

Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Combinatorics, Markov chain, Reliability, Shock model, Statistical conditioning

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Source

Volume

237

Issue

1

Start Page

384

End Page

388

Collections