Discrete Time Series-Parallel System and Its Optimal Configuration

No Thumbnail Available

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Sci Ltd

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Events

Abstract

This paper is concerned with properties of series-parallel systems when the component lifetimes have discrete failure time distribution. For a series-parallel system consisting of a specified number of subsystems, we particularly focus on the number of failed components in each subsystem at the time when the system fails. Each subsystem is assumed to have identical components while different subsystems have different types of components. Assuming all components within the system are independent, we obtain exact distributions of the number of failed components at the time when the system fails. For the special case when the components have phase-type failure time distributions, matrix-based expressions are derived for the quantities under concern. The results are used to obtain optimal configuration of the series-parallel system which is replaced at failure.

Description

Dembinska, Anna/0000-0001-7946-8818; Eryilmaz, Serkan/0000-0002-2108-1781

Keywords

Optimal configuration, Phase-type distribution, Series-parallel system

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Source

Volume

215

Issue

Start Page

End Page

Collections