The design and fabrication of supramolecular semiconductor nanowires formed by benzothienobenzothiophene (BTBT)-conjugated peptides

No Thumbnail Available

Date

2018

Journal Title

Journal ISSN

Volume Title

Publisher

Royal Soc Chemistry

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

pi-Conjugated small molecules based on a [1]benzothieno[3,2-b]benzothiophene (BTBT) unit are of great research interest in the development of solution-processable semiconducting materials owing to their excellent charge-transport characteristics. However, the BTBT -core has yet to be demonstrated in the form of electro-active one-dimensional (1D) nanowires that are self-assembled in aqueous media for potential use in bioelectronics and tissue engineering. Here we report the design, synthesis, and self-assembly of benzothienobenzothiophene (BTBT)-peptide conjugates, the BTBT-peptide (BTBT-C-3-COHN-Ahx-VVAGKK-Am) and the C-8-BTBT-peptide (C-8-BTBT-C-3-COHN-Ahx-VVAGKK-Am), as -sheet forming amphiphilic molecules, which self-assemble into highly uniform nanofibers in water with diameters of 11-13(+/- 1) nm and micron-size lengths. Spectroscopic characterization studies demonstrate the J-type - interactions among the BTBT molecules within the hydrophobic core of the self-assembled nanofibers yielding an electrical conductivity as high as 6.0 x 10(-6) S cm(-1). The BTBT -core is demonstrated, for the first time, in the formation of self-assembled peptide 1D nanostructures in aqueous media for potential use in tissue engineering, bioelectronics and (opto)electronics. The conductivity achieved here is one of the highest reported to date in a non-doped state.

Description

Hamley, Ian/0000-0002-4549-0926; Usta, Hakan/0000-0002-0618-1979; Guler, Mustafa O./0000-0003-1168-202X; Edwards-Gayle, Charlotte/0000-0001-7757-107X

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

18

WoS Q

Q1

Scopus Q

Q1

Source

Volume

10

Issue

21

Start Page

9987

End Page

9995

Collections