On 𝜹-shock model with a change point in intershock time distribution

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Statistics & Probability Letters

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

In this paper, we study the reliability of a system that works under 𝛿-shock model. That is, the system failure occurs when the time between two successive shocks is less than a given thresh old 𝛿. In a traditional setup of the 𝛿 shock model, the intershock times are assumed to have the same distribution. In the present setup, a change occurs in the distribution of the intershock times due to an environmental effect. Thus, the distribution of the intershock times changes after a random number of shocks. The reliability of the system is studied under this change point setup.

Description

Published by Statistics & Probability Letters, DOI 10.1016/j.spl.2024.110046

Keywords

Change point, Reliability, Shock model, MTTF, Discrete phase-type distribution.

Turkish CoHE Thesis Center URL

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page