Lossless Text Compression Technique Using Syllable Based Morphology

No Thumbnail Available

Date

2011

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).

Journal Issue

Abstract

In this paper, we present a new lossless text compression technique which utilizes syllable-based morphology of multi-syllabic languages. The proposed algorithm is designed to partition words into its syllables and then to produce their shorter bit representations for compression. The method has six main components namely source file, filtering unit, syllable unit, compression unit, dictionary file and target file. The number of bits in coding syllables depends on the number of entries in the dictionary file. The proposed algorithm is implemented and tested using 20 different texts of different lengths collected from different fields. The results indicated a compression of up to 43%.

Description

Keywords

Algorithm, Multi-syllabic languages, Syllable, Text compression technique

Turkish CoHE Thesis Center URL

Fields of Science

Citation

15

WoS Q

Q4

Scopus Q

Q2

Source

International Arab Journal of Information Technology

Volume

8

Issue

1

Start Page

End Page