Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces

No Thumbnail Available

Date

2013

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

inst Chemical Engineers

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Energy Systems Engineering
(2009)
The Department of Energy Systems Engineering admitted its first students and started education in the academic year of 2009-2010 under Atılım University School of Engineering. In this Department, all kinds of energy are presented in modules (conventional energy, renewable energy, hydrogen energy, bio-energy, nuclear energy, energy planning and management) from their detection, production and procession; to their transfer and distribution. A need is to arise for a surge of energy systems engineers to ensure energy supply security and solve environmental issues as the most important problems of the fifty years to come. In addition, Energy Systems Engineering is becoming among the most important professions required in our country and worldwide, especially within the framework of the European Union harmonization process, and within the free market economy.

Journal Issue

Abstract

When it is not consumed, bread presents a major source of food waste, both in terms of the amount and its economic value. However, bread also possesses the characteristics of an ideal substrate for solid state fermentation. Yet nearly all wasted bread ends up in landfill sites, where it is converted into methane by anaerobic digestion. Governments are finally taking action and, according to the EU Landfill Directive, for example, biodegradable municipal waste disposed into landfills must be decreased to 35% of 1995 levels, by 2020. Solid state fermentation of waste bread for the production of value added products is a novel idea, which could help with the achievement of this target. In this study, glucoamylase and protease production from waste bread pieces, via solid state fermentation, was investigated in detail. The optimum fermentation conditions for enzyme production were evaluated as, 20 mm particle size, 1.8 (w/w, db) initial moisture ratio, and duration of 144h. Under these conditions, glucoamylase and protease activities reached up to 114.0 and 83.2 U/g bread (db), respectively. This study confirms that waste bread could be successfully utilised as a primary raw material in cereal based biorefineries. (C) 2013 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Description

Webb, Colin/0000-0002-4094-2524; Lin, Carol Sze Ki/0000-0002-8493-4307

Keywords

Aspergillus awamori, Glucoamylase, Protease, Solid state fermentation, Waste bread, Cereal based biorefineries

Turkish CoHE Thesis Center URL

Fields of Science

Citation

69

WoS Q

Q2

Scopus Q

Source

Volume

91

Issue

C4

Start Page

638

End Page

646

Collections