Enhancing the Optoelectronic Performance of As<sub>2</Sub>se<sub>3< Thin Films Via Ag Slabs Sandwiching

No Thumbnail Available

Date

2020

Authors

Qasrawi, A. F.
Qasrawı, Atef Fayez Hasan
Alharbi, Seham Reef

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Electrical & Electronics Engineering
Department of Electrical and Electronics Engineering (EE) offers solid graduate education and research program. Our Department is known for its student-centered and practice-oriented education. We are devoted to provide an exceptional educational experience to our students and prepare them for the highest personal and professional accomplishments. The advanced teaching and research laboratories are designed to educate the future workforce and meet the challenges of current technologies. The faculty's research activities are high voltage, electrical machinery, power systems, signal and image processing and photonics. Our students have exciting opportunities to participate in our department's research projects as well as in various activities sponsored by TUBİTAK, and other professional societies. European Remote Radio Laboratory project, which provides internet-access to our laboratories, has been accomplished under the leadership of our department with contributions from several European institutions.

Journal Issue

Abstract

In this work, the effects of insertion of Ag slabs of thicknesses of 50, 100 and 200 nm between layers of arsenic selenide are reported. The glassy structured As2Se3 is characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, ultraviolet-visible light spectrophotometry and impedance spectroscopy techniques. While the two stacked layers of As2Se3 exhibited high absorption and energy band gap values that nominate them for optoelectronic applications, the Ag slabs enhanced the light absorbability by 3.98, 5.77, 6.13 times and shrunk the energy band gap by 1.16 %, 7.40 % and 13.8 % for Ag slabs of thicknesses of 50, 100 and 200 nm, respectively. In addition, even though the As2Se3/As2Se3 layers exhibited negative capacitance effect in the frequency domain of 0.01-1.80 GHz, the insertion of Ag slabs removed the negative capacitance effect and forced the capacitance spectra to exhibit resonance at critical frequency of value of 0.23 GHz. The modeling of the capacitance spectra have shown that the geometrical capacitance is increased by one order of magnitude upon Ag slabs insertion. The dynamic capacitance is limited by electrons (holes) plasmonic interaction at the interface between the As2Se3/Ag/As2Se3 layers. Furthermore, the capacitance- voltage characteristics of the As2Se3/Ag/As2Se3 films confirmed the suitability of the devices to exhibit MOS device features. The characteristics of the stacked layers of As2Se3 indicate their multi-functionality as an optical absorbers/receivers and as microwave cavities.

Description

Qasrawi, Atef Fayez/0000-0001-8193-6975; Alharbi, Seham/0000-0002-0702-6866

Keywords

As2Se3/Ag/As2Se3, Negative capacitance, High absorbance, Electronic switch, Microwave cavity

Turkish CoHE Thesis Center URL

Fields of Science

Citation

7

WoS Q

Q2

Scopus Q

Source

Volume

219

Issue

Start Page

End Page

Collections