Transmutation of minor actinides in Candu reactors

No Thumbnail Available

Date

2010

Journal Title

Journal ISSN

Volume Title

Publisher

Research Projects

Organizational Units

Organizational Unit
Department of Mechanical Engineering
(2016)
The Mechanical Engineering Doctoral Program has started in 2016-2017 academic year. We have highly qualified teaching and research faculty members and strong research infrastructure in the department for graduate work. Research areas include computational and experimental research in fluid and solid mechanics, heat and mass transfer, advanced manufacturing, composites and other advanced materials. Our fundamental mission is to train engineers who are able to work with advanced technology, create innovative approaches and authentic designs, apply research methods effectively, conduct research and develop high quality methods and products in space, aviation, defense, medical and automotive industries, with a contemporary education and research infrastructure.

Journal Issue

Abstract

Large quantities of nuclear waste plutonium have been accumulated in the civilian LWRs and CANDU reactors in form of minor actinides (MAs). Reactor grade plutonium and other transuranium elements can be used as a booster fissile fuel material in form of mixed ThO2/MAO2 fuel in a CANDU fuel bundle in order to assure reactor criticality. Following fuel compositions have been selected for investigations; Reactor grade plutonium: Circled digit one 96 % thoria (ThO2) + 4 % PuO2 and Circled digit two 91 % ThO2 + 5 % UO2 + 4 % PuO2. The latter is used for the purpose of denaturing the new 233U fuel with 238U. The behavior of the criticality k∞ and the burn-up values of the reactor have been pursued by full power operation for > ∼ 8 years. The reactor starts with k∞ = ∼ 1.39 and the criticality drops down asymptotically to values k∞ > 1.06, still acceptable and useable in a CANDU reactor. Reactor criticality k ∞ remains nearly constant between the 4th year and 7th year of plant operation and then a slight increase is observed thereafter, along with a continuous depletion of thorium fuel. Totality of nuclear waste actinides after the extraction of uranium isotopes: The best fuel compositions with respect to power flattening as well as long term reactivity have been found by mixing thoria with 14 % minor actinides in form of MAO 2 in the central fuel bundle and decreasing the MAO2 content in radial direction at discrete levels down to 2 % at the periphery. The temporal variation of the criticality k∞ and the burn-up values of the reactor have been calculated for a period of 10 years, operated at full power. The criticality starts at time zero near to k∞ = ∼ 1.24 for both fuel compositions. A sharp decrease of the criticality has been observed during the first year as a consequence of rapid plutonium burnout in the actinide fuel. The criticality becomes quasi constant after the 2 nd year after sufficient 233U is accumulated and remains close to k∞,end = ∼1.06 over ∼ 10 years. Quasi-uniform power generation density has been realized in the fuel bundle throughout the reactor operation. In all investigated cases, plutonium burns up rapidly and after the 2nd year, the CANDU reactor begins to operate practically as a thorium burner.

Description

Keywords

[No Keyword Available]

Turkish CoHE Thesis Center URL

Citation

0

WoS Q

Scopus Q

Source

2010 1st International Nuclear and Renewable Energy Conference, INREC'10 -- 2010 1st International Nuclear and Renewable Energy 2010 1st International Nuclear and Renewable Energy Conference, INREC'10 -- 21 March 2010 through 24 March 2010 -- Amman -- 80564

Volume

Issue

Start Page

End Page

Collections