İnsan Kafasındaki Dokuların Öziletkenliklerinin in vivo E/MEG Verileri ile Kestirilmesi ve Üç Değişik Kestirim Algoritma Sonuçlarının Karşılaştırılması

No Thumbnail Available

Date

2004

Journal Title

Journal ISSN

Volume Title

Publisher

Signal Processing and Communications Applications Conference

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Computer Engineering
(1998)
The Atılım University Department of Computer Engineering was founded in 1998. The department curriculum is prepared in a way that meets the demands for knowledge and skills after graduation, and is subject to periodical reviews and updates in line with international standards. Our Department offers education in many fields of expertise, such as software development, hardware systems, data structures, computer networks, artificial intelligence, machine learning, image processing, natural language processing, object based design, information security, and cloud computing. The education offered by our department is based on practical approaches, with modern laboratories, projects and internship programs. The undergraduate program at our department was accredited in 2014 by the Association of Evaluation and Accreditation of Engineering Programs (MÜDEK) and was granted the label EUR-ACE, valid through Europe. In addition to the undergraduate program, our department offers thesis or non-thesis graduate degree programs (MS).

Journal Issue

Abstract

Doku öziletkenliklerinin bilinmesi, insan vücudunun güvenilir hacim iletken modellerinin oluşturulmasında ve ileri/ters biyoelektrik alan problemlerinin çözümünde gereklidir. Bu çalışmada, insan kafasindaki dokulann öziletkenliklerinin EEG ve MEG verileri kullanılarak in vivo kestirimi ipin üç farklı kestirim algoritmasi kullanılarak elde edilen sonuçlar karşılaştırılmıştır. Uygulanan bu algoritmalar; En Küçük Hatalar Karesi (E.K.H.K) kestirim algoritmasi, Bayesian MAP kestirim algoritmasi ve istatistiksel Kısıtlı Minimum Ortalama Hatalar Karesi (1.K.M.O.H.K) algoritmasıdır. Algoritmalar, geometrik yapı, ön bilgisi ile doku öziletkenlikleri ile doğrusallaştırma ve enstrümantasyon gürültüsünün istatistiksel ön bilgilerini girdi olarak kullanır. E/MEG verileri, medyan sinirin uyarıkdığı kaynak konumlandırma deneyinden sırasıyla 32 kanallı EEG ve 31 kanallı magnetometre ile somatosensory korteks üzerinden ölçülmüştür. Kafanın anatomik geometri bilgisi 256 adet TI ağırlıklı MRI görüntüden elde edilmiş ve kafa derisi, kafatası ve beyin olarak homojen üç bölgeye bölütlendirilmiştir. Sözkonusu algoritmalar kullanılarak kafa derisi, kafatası ve beyin öziletkenlikleri ve hata oranları üç farklı algoritma ile kestirilmiştir. Hata oranları E.K.H.K için %90, Bayesian Map kestirim algoriması için % 20.5 ve İ.K.M.O.H.K algoritması için %12.5 olarak hesaplanmıştır. Sonuçta İ.K.M.O.H.K algoritmasının diğer algoritmalara kıyasla daha düşük hata oranları verdiği gösterilmiştir.

Description

Estimation Of Human Head Tissue Conductivities by Using In vivo EMEG Data and Comparison of Three Different Estimation Algorithm Results
ABSTRACT: Knowledge of tissue conductivities is needed to construct reliable volume conductor models ofthe human body and the head in solving forward and inverse bioelectric field problems. In this study three different estimation algorithms are applied to in vivo human head tissue resistivity estimation by using EEG and MEG data. The applied algorithms are conventional Least-Squared EROI Algorithm (LSEE), Bayesian MAP Algorithm and statistically constrained Minimum Mean Squared Error Estimator (MiMSEE). The algorithms intake a priori information on body geometry (realistic boundary element model), statistical properties of regional conductivities (assumed to be uniformly dishihuted between upper and lower hounds), linearization error and instrumentation noise. The EEG-MEG data set has been obtained from a source localization experiment in which the median nerve has been stimulated. The anatomical boundary information has been extracted from 256 TI-weighted MRI images. The MEG data have been obtained by using a 31- channel magnetometer over the somatosensory cortex. By using the data, scalp, skull and brain conductivities have been estimated and estimation variances are calculated by using the algorithms. It is shown that MiMSEE algorithm gives lower error rates than the other two algorithms. The calculated error rates are % 90 for the LSEE, %20.5 for the Bayesian Map estimator and %12.5 for the MiMSEE.

Keywords

electrical & electronics engineering

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page