The Markov discrete time δ-shock reliability model and a waiting time problem

No Thumbnail Available

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley

Research Projects

Organizational Units

Organizational Unit
Industrial Engineering
(1998)
Industrial Engineering is a field of engineering that develops and applies methods and techniques to design, implement, develop and improve systems comprising of humans, materials, machines, energy and funding. Our department was founded in 1998, and since then, has graduated hundreds of individuals who may compete nationally and internationally into professional life. Accredited by MÜDEK in 2014, our student-centered education continues. In addition to acquiring the knowledge necessary for every Industrial engineer, our students are able to gain professional experience in their desired fields of expertise with a wide array of elective courses, such as E-commerce and ERP, Reliability, Tabulation, or Industrial Engineering Applications in the Energy Sector. With dissertation projects fictionalized on solving real problems at real companies, our students gain experience in the sector, and a wide network of contacts. Our education is supported with ERASMUS programs. With the scientific studies of our competent academic staff published in internationally-renowned magazines, our department ranks with the bests among other universities. IESC, one of the most active student networks at our university, continues to organize extensive, and productive events every year.

Journal Issue

Abstract

delta-shock model is one of the widely studied shock models in reliability theory and applied probability. In this model, the system fails due to the arrivals of two consecutive shocks which are too close to each other. That is, the system breaks down when the time between two successive shocks falls below a fixed threshold delta. In the literature, the delta-shock model has been mostly studied by assuming that the time between shocks have continuous distribution. In the present paper, the discrete time version of the model is considered. In particular, a proper waiting time random variable is defined based on a sequence of two-state Markov dependent binary trials and the problem of finding the distribution of the system's lifetime is linked with the distribution of the waiting time random variable, and we study the joint as well as the marginal distributions of the lifetime, the number of shocks and the number of failures associated with these binary trials.

Description

Keywords

Markov chain, reliability, waiting time, delta-Shock model

Turkish CoHE Thesis Center URL

Citation

7

WoS Q

Q3

Scopus Q

Q3

Source

Volume

38

Issue

6

Start Page

952

End Page

973

Collections