Ceylan, Ceren

Loading...
Profile Picture
Name Variants
Ceren, Ceylan
C.,Ceylan
C., Ceren
Ceylan, Ceren
Ceylan,C.
C.,Ceren
C., Ceylan
Job Title
Araştırma Görevlisi
Email Address
ceylan.ceren@atilim.edu.tr
Main Affiliation
Energy Systems Engineering
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

4

Articles

2

Citation Count

73

Supervised Theses

1

Scholarly Output Search Results

Now showing 1 - 1 of 1
  • Conference Object
    Citation - Scopus: 0
    Design and Optimization of Green Hydrogen-Based Hybrid Energy System
    (International Association for Hydrogen Energy, IAHE, 2022) Ceylan,C.; Devrim,Y.; Energy Systems Engineering
    Hydrogen (H2) is widely used in many industries because it can be used as a chemical raw material with its high mass-energy density and can be converted back into electricity via fuel cells. H2 energy systems seem to be one of the most effective solutions for providing a better environment and sustainability. Green H2, produced by renewable energy-assisted electrolysis without greenhouse gas emissions, has been of great importance in recent years. In this study, a hybrid energy system including Photovoltaic (PV), Wind Turbine (WT), Proton Exchange Membrane Fuel Cell (PEMFC), and electrolyzer is compared for grid-connected and off-grid operating conditions. In the grid-connected system, electricity generated from PV and WT is used directly to meet electricity demand, while excess electricity is used for green H2 production. In the off-grid connected system, electricity generated from PV and WT was used for H2 production. Produced H2 and O2 were used to generate electricity by PEMFC. While 20186 kWh energy & 3273 m3 H2 were generated in an on-grid connected system, 95145 kWh energy & 17942 m3 H2 and 83511 kWh energy & 14370 m3 H2 were generated in two different configurations in the off-grid connected system. The Levelized Cost of Energy (LCOE) for the on-grid connected system and the off-grid system for two different designs were determined as 0.307 $/kWh, 0.341 $/kWh and 0.349 $/kWh, respectively. The hybrid system design was simulated using MATLAB software and it was examined which hybrid energy system configuration would be the most economical to meet the load. © 2022 Proceedings of WHEC 2022 - 23rd World Hydrogen Energy Conference: Bridging Continents by H2. All rights reserved.