Bostan, Atila

Loading...
Profile Picture
Name Variants
B., Atila
A., Bostan
Bostan,A.
Bostan, Atila
A.,Bostan
B.,Atila
Atila, Bostan
Job Title
Doktor Öğretim Üyesi
Email Address
atila.bostan@atilim.edu.tr
Main Affiliation
Computer Engineering
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals Report Points

SDG data could not be loaded because of an error. Please refresh the page or try again later.
Scholarly Output

33

Articles

16

Citation Count

19

Supervised Theses

6

Scholarly Output Search Results

Now showing 1 - 6 of 6
  • Conference Object
    Citation - Scopus: 2
    An Undergraduate Curriculum for Deep Learning
    (Institute of Electrical and Electronics Engineers Inc., 2018) Tirkes,G.; Ekin,C.C.; Engul,G.; Bostan,A.; Karakaya,M.; Computer Engineering
    Deep Learning (DL) is an interesting and rapidly developing field of research which has been currently utilized as a part of industry and in many disciplines to address a wide range of problems, from image classification, computer vision, video games, bioinformatics, and handwriting recognition to machine translation. The starting point of this study is the recognition of a big gap between the sector need of specialists in DL technology and the lack of sufficient education provided by the universities. Higher education institutions are the best environment to provide this expertise to the students. However, currently most universities do not provide specifically designed DL courses to their students. Thus, the main objective of this study is to design a novel curriculum including two courses to facilitate teaching and learning of DL topic. The proposed curriculum will enable students to solve real-world problems by applying DL approaches and gain necessary background to adapt their knowledge to more advanced, industry-specific fields. © 2018 IEEE.
  • Conference Object
    Citation - Scopus: 0
    Yazilim Mühendisliʇi Eʇitiminde Bitirme Projesi Dersinin Öʇrenci Bakiş Açisiyla Deʇerlendirilmesi
    (CEUR-WS, 2013) Karakaya,M.; Bostan,A.; Computer Engineering
    [No abstract available]
  • Conference Object
    Citation - Scopus: 0
    Yazilim Mühendisligi Egitiminde Bitirme Projesinin Yürütülmesinde İki Farkli Yöntemin Ögrenci Bakis Açisiyla Degerlendirilmesi
    (CEUR-WS, 2015) Karakaya,M.; Bostan,A.; Computer Engineering
    [No abstract available]
  • Conference Object
    Citation - Scopus: 0
    Deep Learning and Current Trends in Machine Learning
    (Institute of Electrical and Electronics Engineers Inc., 2018) Bostan,A.; Ekin,C.; Sengul,G.; Karakaya,M.; Tirkes,G.; Computer Engineering
    Academic interest and commercial attention can be used to identify how much potential a novel technology may have. Since the prospective advantages in it may help solving some problems that are not solved yet or improving the performance of readily available ones. In this study, we have investigated the Web of Science (WOS) indexing service database for the publications on Deep Learning (DL), Machine Learning (ML), Convolutional Neural Networks (CNN), and Image Processing to reveal out the current trend. The figures indicate the strong potential in DL approach especially in image processing domain. © 2018 IEEE.
  • Conference Object
    Deep Learning and Current Trends in Machine Learning
    (Institute of Electrical and Electronics Engineers Inc., 2018) Bostan,A.; Ekin,C.; Sengul,G.; Karakaya,M.; Tirkes,G.; Computer Engineering
    Academic interest and commercial attention can be used to identify how much potential a novel technology may have. Since the prospective advantages in it may help solving some problems that are not solved yet or improving the performance of readily available ones. In this study, we have investigated the Web of Science (WOS) indexing service database for the publications on Deep Learning (DL), Machine Learning (ML), Convolutional Neural Networks (CNN), and Image Processing to reveal out the current trend. The figures indicate the strong potential in DL approach especially in image processing domain. © 2018 IEEE.
  • Conference Object
    An Undergraduate Curriculum for Deep Learning
    (Institute of Electrical and Electronics Engineers Inc., 2018) Tirkes,G.; Ekin,C.C.; Engul,G.; Bostan,A.; Karakaya,M.; Computer Engineering
    Deep Learning (DL) is an interesting and rapidly developing field of research which has been currently utilized as a part of industry and in many disciplines to address a wide range of problems, from image classification, computer vision, video games, bioinformatics, and handwriting recognition to machine translation. The starting point of this study is the recognition of a big gap between the sector need of specialists in DL technology and the lack of sufficient education provided by the universities. Higher education institutions are the best environment to provide this expertise to the students. However, currently most universities do not provide specifically designed DL courses to their students. Thus, the main objective of this study is to design a novel curriculum including two courses to facilitate teaching and learning of DL topic. The proposed curriculum will enable students to solve real-world problems by applying DL approaches and gain necessary background to adapt their knowledge to more advanced, industry-specific fields. © 2018 IEEE.