Güler, Enver
Loading...
Name Variants
G.,Enver
Guler, Enver
G., Enver
E., Güler
E.,Güler
Güler,E.
Enver, Güler
E., Guler
Guler,E.
Enver, Guler
Guler E.
Güler E.
Güler, Enver
E.,Guler
Guler, E.
Guler, Enver
G., Enver
E., Güler
E.,Güler
Güler,E.
Enver, Güler
E., Guler
Guler,E.
Enver, Guler
Guler E.
Güler E.
Güler, Enver
E.,Guler
Guler, E.
Job Title
Doçent Doktor
Email Address
enver.guler@atilim.edu.tr
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output
30
Articles
16
Citation Count
167
Supervised Theses
6
30 results
Scholarly Output Search Results
Now showing 1 - 10 of 30
Article Citation Count: 14Performance of Reverse Electrodialysis System for Salinity Gradient Energy Generation by Using a Commercial Ion Exchange Membrane Pair with Homogeneous Bulk Structure(Mdpi, 2021) Altiok, Esra; Kaya, Tugce Zeynep; Guler, Enver; Kabay, Nalan; Bryjak, Marek; Chemical EngineeringSalinity gradient energy is a prominent alternative and maintainable energy source, which has considerable potential. Reverse electrodialysis (RED) is one of the most widely studied methods to extract this energy. Despite the considerable progress in research, optimization of RED process is still ongoing. In this study, effects of the number of membrane pairs, ratio of salinity gradient and feed velocity on power generation via the reverse electrodialysis (RED) system were investigated by using Fujifilm cation exchange membrane (CEM Type 2) and FujiFilm anion exchange membrane (AEM Type 2) ion exchange membranes. In the literature, there is no previous study based on a RED system equipped with Fujifilm AEM Type II and CEM Type II membranes that have homogeneous bulk structure. Using 400 mu m of intermembrane distance, maximum obtainable power density by 5 pairs of Fujifilm membranes at 1:45 salinity ratio and with a linear flow rate of 0.833 cm/s was 0.426 W/m(2).Article Citation Count: 4Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs(Mdpi, 2022) Kaya, Tugce Zeynep; Altiok, Esra; Guler, Enver; Kabay, Nalan; Chemical EngineeringThis study investigates the influence of co-existing ions on the salinity gradient power generation performance of the reverse electrodialysis (RED) using three different commercial ion exchange membrane pairs. The feed solutions, including the mixture of two different salts, were prepared with 90 wt.% of NaCl and 10 wt.% of LiCl, KCl, CaCl2, MgCl2 or Na2SO4 by keeping the salt ratio between high concentrate solution and low concentrate solution constant as 1:30 (g/g) at various flow velocities (50, 125 and 200 mL/min). It was observed that the divalent ions exhibited a negative impact on the performance of the RED system due to their high valence and low ionic mobility depending on their high hydrated radius and low diffusion coefficients compared to those of the monovalent ions. On the other hand, the effect of the monovalent ions differed according to the properties of ion exchange membranes used in the RED stack. When the power generation performances of ion exchange membrane pairs employed in the RED stack were compared, it was considered that Neosepta AMX and CMX membranes provided the highest power density due to their low membrane thicknesses, low electrical resistances, and relatively high ion exchange capacities compared to other two commercial ion exchange membrane pairs.Book Part Citation Count: 0Green energy generation using membrane technologies based on salinity gradient(Elsevier, 2023) Güler,E.; Cihanoğlu,A.; Altıok,E.; Kaya,T.Z.; Eti,M.; Kabay,N.; Chemical EngineeringElectrical energy can be extracted from salinity gradients, often represented by two aqueous solutions with different salinities. This becomes very interesting when sustainable and practical electromembrane processes can be applied to convert the salinity gradient power into electric power. Reverse electrodialysis (RED), in this context, has gained much interest in the last few years. In addition to many operational and design parameters affecting the process output, ion exchange membranes (IEMs) represent core elements in RED. In this chapter, it is aimed to introduce and discuss the current trend of IEMs as well as vital operational parameters and fouling affecting the RED performance. © 2023 Elsevier Inc. All rights reserved.Book Part Citation Count: 11Water flux and reverse salt flux(Elsevier, 2018) Koseoglu,H.; Guler,E.; Harman,B.I.; Gonulsuz,E.; Chemical EngineeringFollowing the increase in the world population and the demand for economic development, the need for energy has increased day by day. Rapidly increasing global energy consumption is supplied mainly by fossil fuels bearing the risk of exhaustion with decreasing reserves, which now have the effect of carbon emissions and greenhouse gases. These concerns lead humanity to significantly reduce the use of fossil fuels. Salinity gradient energy (SGP), a type of hydroelectric energy, also has a high potential to displace fossil fuels. SGP is less periodic than sources like wind and solar energy. The osmotic pressure gradient energy uses the released energy during mixing of the water currents with different salinity The Gibbs free energy from mixing two solutions of different concentrations is an unnoticed source of energy. Salinity gradient energy, also referred to as osmotic energy or blue energy, can be derived from natural sources such as clean river water, salt water, and desalination of seawater. Various approaches have been developed to capture salinity gradient energy, but the most promising are pressure-retarded osmosis (PRO), reverse electrodialysis (RED) and forward osmosis (FO) processes. In this chapter theoretical approaches derived from the current literature is presented for the deep conceptual understanding of the water flux and reverse salt flux issues. © 2018 Elsevier B.V. All rights reserved.Review Citation Count: 28Reverse electrodialysis for salinity gradient power generation: Challenges and future perspectives(Amirkabir University of Technology - Membrane Processes Research Laboratory, 2018) Güler,E.; Nijmeijer,K.; Chemical EngineeringSalinity gradient energy, which is also known as Blue energy, is a renewable energy form that can be extracted from the mixing of two solutions with different salinities. About 80% of the current global electricity demand could potentially be covered by this energy source. Among several energy extraction technologies, reverse electrodialysis (RED), using anion and cation exchange membranes for ionic transport that is converted into an electrical current at the electrodes, is most promising. This study provides a brief overview of recent advances in RED technology. Furthermore, it discusses future research directions and prospects to expand the true potential of this technology for power generation. Major emphasis should be on the development of task-specific membranes and stacks, the control of fouling and the design of new applications and hybrid processes. © 2018 MPRL. All rights reserved.Article Citation Count: 12Investigations on the effects of operational parameters in reverse electrodialysis system for salinity gradient power generation using central composite design (CCD)(Elsevier, 2022) Altiok, Esra; Kaya, Tugce Zeynep; Othman, Nur Hidayati; Kinali, Orhan; Kitada, Soma; Guler, Enver; Kabay, Nalan; Chemical EngineeringReverse electrodialysis (RED) can be utilized for the production of renewable energy from salinity gradients. However, there are many key parameters that could influence the performance of RED. This study investigates the use RSM for development of a predictive power density (PD) and open-circuit voltage (OCV) model for the RED system. A three-factor central composite design (CCD) was used to quantify the effects of flow velocity (X-1), salinity ratio (X-2), and number of cell pairs (X-3) towards PD and OCV. A total of 17 experimental data were fitted and ANOVA was used to validate the accuracy of the models. 3D and surface plots were created to foresee the optimal levels of each variable. It was found that flow velocity and salinity ratio have the most dominant influences on the RED performances as compared to number of cell pairs. The predicted PD and OCV values were found to be reasonably fit with the experimental data, validating the predictability of applied models. Therefore, this study suggests that CCD can be considered an effective tool for evaluating and optimizing the RED system using a minimum number of experiments.Article Citation Count: 19Seawater desalination by using nanofiltration (NF) and brackish water reverse osmosis (BWRO) membranes in sequential mode of operation(Amirkabir University of Technology - Membrane Processes Research Laboratory, 2020) Kaya,C.; Jarma,Y.A.; Muhidin,A.M.; Güler,E.; Kabay,N.; Arda,M.; Yüksel,M.; Law; Chemical EngineeringIn this study, the applicability of nanofiltration (NF) membranes as a pretreatment prior to reverse osmosis (RO) in seawater desalination was investigated. The membranes used were NF270 and NF90 as the NF membranes, while the brackish water (BW) RO membrane BW30 was used as the RO membrane. In desalination tests, permeates of the NF membranes were collected and used as the feed to the BW30 membrane. The calculated permeate fluxes were 6.7 L/h.m2, 11.3 L/h.m2, 24.3 L/h.m2, and 36.6 L/h.m2 for single BW30-35 bar, NF270-30 bar + BW30-35 bar, NF90-30 bar + BW30-25 bar and NF90-30 BW30-35 bar, respectively. The calculated water recovery and rejected salt values were 51.6%, 41.4%, 24.8%, 15.4% and 98.2%, 98.2%, 96.0%, 91.0% for NF90-30 bar + BW30-35 bar, NF90-30 bar + BW30-25 bar, NF270-30 bar + BW30-35 bar and single BW30-35 bar, respectively. The qualities of the product waters of integrated systems (NF+BWRO) and the single BWRO system were also investigated. Boron rejection was fairly well with average boron rejections of 59.3% and 60.2% by NF90-30 bar + BW30-25 bar and NF90-30 bar + BW30-35 bar combinations, respectively while single BW30-35 bar gave an average rejection of 49.6%. The results obtained showed that the quality of product water obtained using single BWRO did not comply with the irrigation standards, while the integrated systems provided total compliance to irrigation standards with the exception of boron. © 2020 MPRL. All rights reserved.Book Part Citation Count: 0Current status of ion exchange membranes for electrodialysis/reverse electrodialysis and membrane capacitive deionization/capacitive mixing(Elsevier, 2022) Kabay,N.; Güler,E.; Smolinska-Kempisty,K.; Bryjak,M.; Chemical EngineeringThe world is facing several critical problems, which were integrated by the United Nation into the 17 Sustainable Development Goals (SDGs). Adopted by all the U.N. member states, the SDGs provide goals for attaining a common welfare by 2030. Among these goals, access to clean water and green energy are the most important challenges. The use of ion exchange membranes for the production of safe water and harvesting renewable energy seem to meet these challenges. This chapter will present the history and perspectives of the use of ion exchange membranes for these struggles. © 2022 Elsevier Inc. All rights reserved.Review Citation Count: 5Ion Exchange Membranes for Reverse Electrodialysis (RED) Applications - Recent Developments(Amirkabir University of Technology - Membrane Processes Research Laboratory, 2021) Eti,M.; Othman,N.H.; Guler,E.; Kabay,N.; Chemical EngineeringThe innovative membrane-based technology called reverse electrodialysis (RED) is capable of producing electrical power from the controlled mixing of two aqueous streams of different salinity. There has been tremendous progress so far in the development of RED process in terms of system development, spacer design, membranes properties and operational conditions optimization. Among those, characteristics of the ion exchange membranes are found to be the critical element affecting the performances of RED process. In this respect, a brief overview of the latest developments in ion exchange membranes were presented in this review, focussing on their properties and performances in RED applications. The recent developments of nanocomposite and ion selective membranes, particularly pore filling ion exchange membranes due to their high performances and inexpensive fabrication cost were also summarized. Shortly, fouling problem for the ion exchange membranes employed in the RED system was mentioned. © 2021 Amirkabir University of Technology - Membrane Processes Research Laboratory. All rights reserved.Article Az bilinen fakat potansiyeli yüksek sürdürülebilir bir enerji türü: Mavi Enerji(Herkese Bilim Teknoloji, 2017) Güler, Enver; Chemical Engineering21. yüzyılda insanoğlunun karşılaştığı ve ileride ziyadesiyle sözkonusu olacak en temel durum enerji, su ve gıdaya olan taleptir. Bu talebin karşılanmasında ise sürdürülebilirlik şimdiki ve gelecek kuşakların temel sorunu olmaya devam edecektir. Su, enerji ve gıda arasındaki sıkı bağ açıkça gösteriyor ki; su ve enerji gıda üretiminde, su enerji üretiminde ve enerji su temini ve üretiminde en temel faktörlerdir [1]. Bunun neticesinde bu üçlü bağlam, 2035 yılında enerjiye olan talebin en fazla değer olarak % 50 olacağını öngörmektedir (Şekil 1). Enerjiye olan bu yüksek talebin yakın gelecekte fosil yakıtlar ile sürdürülebilir şekilde karşılanamayacağı aşikardır. Bu durum, enerjinin sürdürülebilir olarak üretimini sağlayacak alternatif teknikler geliştirilmesini bir öncelik haline getirmiştir.
- «
- 1 (current)
- 2
- 3
- »