Güler, Enver

Loading...
Profile Picture
Name Variants
G.,Enver
Guler, Enver
G., Enver
E., Güler
E.,Güler
Güler,E.
Enver, Güler
E., Guler
Guler,E.
Enver, Guler
Guler E.
Güler E.
Güler, Enver
E.,Guler
Guler, E.
Job Title
Doçent Doktor
Email Address
enver.guler@atilim.edu.tr
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

30

Articles

16

Citation Count

167

Supervised Theses

6

Scholarly Output Search Results

Now showing 1 - 10 of 30
  • Article
    Citation Count: 14
    Performance of Reverse Electrodialysis System for Salinity Gradient Energy Generation by Using a Commercial Ion Exchange Membrane Pair with Homogeneous Bulk Structure
    (Mdpi, 2021) Güler, Enver; Kaya, Tugce Zeynep; Guler, Enver; Kabay, Nalan; Bryjak, Marek; Chemical Engineering
    Salinity gradient energy is a prominent alternative and maintainable energy source, which has considerable potential. Reverse electrodialysis (RED) is one of the most widely studied methods to extract this energy. Despite the considerable progress in research, optimization of RED process is still ongoing. In this study, effects of the number of membrane pairs, ratio of salinity gradient and feed velocity on power generation via the reverse electrodialysis (RED) system were investigated by using Fujifilm cation exchange membrane (CEM Type 2) and FujiFilm anion exchange membrane (AEM Type 2) ion exchange membranes. In the literature, there is no previous study based on a RED system equipped with Fujifilm AEM Type II and CEM Type II membranes that have homogeneous bulk structure. Using 400 mu m of intermembrane distance, maximum obtainable power density by 5 pairs of Fujifilm membranes at 1:45 salinity ratio and with a linear flow rate of 0.833 cm/s was 0.426 W/m(2).
  • Master Thesis
    Aspen plus ile asetondan asetik anhidrit üretiminin modellenmesi
    (2018) Güler, Enver; Güler, Enver; Chemical Engineering
    Bu çalışma asetondan, Aspen Plus yazılımıyla, asetik anhidrit üretimini incelemiştir. Bu çalışmanın amacı yüksek saflık seviyesinde asetik anhidriti üretmek için uygun bir sistem tasarımını basitleştirmek ve aynı zamanda ürünler üzerindeki etkileri ve basınç gibi operasyonal değişiklikleri incelemektir. Tasarımda, aseton ilk adımda ketine ve metana ayrışır, ardından ketin yüksek saflıkta asetik anhidrit üretmek üzere asetik asit ile reaksiyona girer. Bütün bu adımlar Aspen Plus yazılımı ile özel koşullar altında yapılmıştır. İlk olarak, spesifik ketin üretmek asetonun kraking reaksiyonu için uygun şartlar seçilmiştir. Ardından, ketin ve asetik asit arasında tepkimeyle asetik anhidrit üretmek için uygun şartlar seçilmiştir. Daha sonra, hassasiyet analiziyle ürünler üzerinden operasyonal değişikliklerin etkileri incelenmiştir. Son olarak, değişkenlerin üretimin mol fraksiyonu üzerindeki etkileri bulunmuş ve en iyi şartları seçmek için de hassasiyet analizi gerçekleştirilmiştir.
  • Review
    Citation Count: 28
    Reverse electrodialysis for salinity gradient power generation: Challenges and future perspectives
    (Amirkabir University of Technology - Membrane Processes Research Laboratory, 2018) Güler, Enver; Nijmeijer,K.; Chemical Engineering
    Salinity gradient energy, which is also known as Blue energy, is a renewable energy form that can be extracted from the mixing of two solutions with different salinities. About 80% of the current global electricity demand could potentially be covered by this energy source. Among several energy extraction technologies, reverse electrodialysis (RED), using anion and cation exchange membranes for ionic transport that is converted into an electrical current at the electrodes, is most promising. This study provides a brief overview of recent advances in RED technology. Furthermore, it discusses future research directions and prospects to expand the true potential of this technology for power generation. Major emphasis should be on the development of task-specific membranes and stacks, the control of fouling and the design of new applications and hybrid processes. © 2018 MPRL. All rights reserved.
  • Article
    Citation Count: 12
    Investigations on the effects of operational parameters in reverse electrodialysis system for salinity gradient power generation using central composite design (CCD)
    (Elsevier, 2022) Güler, Enver; Kaya, Tugce Zeynep; Othman, Nur Hidayati; Kinali, Orhan; Kitada, Soma; Guler, Enver; Kabay, Nalan; Chemical Engineering
    Reverse electrodialysis (RED) can be utilized for the production of renewable energy from salinity gradients. However, there are many key parameters that could influence the performance of RED. This study investigates the use RSM for development of a predictive power density (PD) and open-circuit voltage (OCV) model for the RED system. A three-factor central composite design (CCD) was used to quantify the effects of flow velocity (X-1), salinity ratio (X-2), and number of cell pairs (X-3) towards PD and OCV. A total of 17 experimental data were fitted and ANOVA was used to validate the accuracy of the models. 3D and surface plots were created to foresee the optimal levels of each variable. It was found that flow velocity and salinity ratio have the most dominant influences on the RED performances as compared to number of cell pairs. The predicted PD and OCV values were found to be reasonably fit with the experimental data, validating the predictability of applied models. Therefore, this study suggests that CCD can be considered an effective tool for evaluating and optimizing the RED system using a minimum number of experiments.
  • Article
    Citation Count: 19
    Seawater desalination by using nanofiltration (NF) and brackish water reverse osmosis (BWRO) membranes in sequential mode of operation
    (Amirkabir University of Technology - Membrane Processes Research Laboratory, 2020) Yüksel, Melis; Jarma,Y.A.; Güler, Enver; Güler,E.; Kabay,N.; Arda,M.; Yüksel,M.; Law; Chemical Engineering
    In this study, the applicability of nanofiltration (NF) membranes as a pretreatment prior to reverse osmosis (RO) in seawater desalination was investigated. The membranes used were NF270 and NF90 as the NF membranes, while the brackish water (BW) RO membrane BW30 was used as the RO membrane. In desalination tests, permeates of the NF membranes were collected and used as the feed to the BW30 membrane. The calculated permeate fluxes were 6.7 L/h.m2, 11.3 L/h.m2, 24.3 L/h.m2, and 36.6 L/h.m2 for single BW30-35 bar, NF270-30 bar + BW30-35 bar, NF90-30 bar + BW30-25 bar and NF90-30 BW30-35 bar, respectively. The calculated water recovery and rejected salt values were 51.6%, 41.4%, 24.8%, 15.4% and 98.2%, 98.2%, 96.0%, 91.0% for NF90-30 bar + BW30-35 bar, NF90-30 bar + BW30-25 bar, NF270-30 bar + BW30-35 bar and single BW30-35 bar, respectively. The qualities of the product waters of integrated systems (NF+BWRO) and the single BWRO system were also investigated. Boron rejection was fairly well with average boron rejections of 59.3% and 60.2% by NF90-30 bar + BW30-25 bar and NF90-30 bar + BW30-35 bar combinations, respectively while single BW30-35 bar gave an average rejection of 49.6%. The results obtained showed that the quality of product water obtained using single BWRO did not comply with the irrigation standards, while the integrated systems provided total compliance to irrigation standards with the exception of boron. © 2020 MPRL. All rights reserved.
  • Book Part
    Citation Count: 0
    Current status of ion exchange membranes for electrodialysis/reverse electrodialysis and membrane capacitive deionization/capacitive mixing
    (Elsevier, 2022) Güler, Enver; Güler,E.; Smolinska-Kempisty,K.; Bryjak,M.; Chemical Engineering
    The world is facing several critical problems, which were integrated by the United Nation into the 17 Sustainable Development Goals (SDGs). Adopted by all the U.N. member states, the SDGs provide goals for attaining a common welfare by 2030. Among these goals, access to clean water and green energy are the most important challenges. The use of ion exchange membranes for the production of safe water and harvesting renewable energy seem to meet these challenges. This chapter will present the history and perspectives of the use of ion exchange membranes for these struggles. © 2022 Elsevier Inc. All rights reserved.
  • Master Thesis
    Ters elektrodiyaliz sistemi için poliepiklorohidrin bazlı anyon değişim membranları
    (2021) Güler, Enver; Güler, Enver; Chemical Engineering
    Tuzluluk gradyan gücü yenilenebilir, sürdürülebilir ve karbon içermeyen bir enerji kaynağıdır. Ters elektrodiyaliz sistemi, tuzluluk gradyan gücünden yararlanarak deniz ve nehir suyunun karışımı ile enerji üretiminde en etkili yöntemlerden biridir. Bu yüzden, bu teknoloji ile tuzluluk gradyan gücünden elektrik üretimi için ucuz ve uygun iyon değişim membranlarının geliştirilmesi önemlidir. Özellikle, anyon değişim membranlarının hazırlanması daha karmaşıktır ve bu nedenle istenen fizikokimyasal özelliklere ulaşmak için daha fazla çaba gerektirir. Bundan dolayı bu çalışmanın temel amaçları anyon değişim membranlarını üretmek, karakterize etmek ve onları laboratuvar ölçekli RED sisteminde test etmektir. Bu tezde aktif polimeri poliepiklorohidrin olan homojen anyon değişim membranları çözücü uçurma yöntemi ile laboratuvar ölçekli olarak üretilmiştir. Anyon değişim membranlarını üretirken farklı klor miktarlarına sahip (H, 37% klor ve C, 25% klor) iki tür poliepiklorohidrin kullanılmıştır. Membranların karışım oranları (aktif polimerin inert polimere kütlece oranı) 0.6 dan 2.0 a kadar, diamine oranları (çapraz bağlayıcının klorometil gruplarına kütlece oranı) ise 1.2 den 4.0 a kadar ayarlanmıştır. Bu anyon değişim membranlarını karakterize etmek için SEM, FTIR ve DSC analizleri incelenmiştir. RED sistemi için uygun membranı karşılaştırmak ve bulmak için iyon değişim kapasitesi, şişme derecesi ve sabit yük yoğunluğu belirlenmiştir. Karakterizasyon sonuçlarına göre bu membranlar RED sisteminde test edilmiş ve üç çift membran kullanılmıştır. Besleme akış hızları dakikada 30 ml, 60 ml, 90 ml ve 120 ml ve tuzluluk oranı 1:30 (g/g) olarak ayarlandı. En yüksek maksimum güç yoğunluk değeri 0.6 karışım ve 2.0 diamine oranında PECH-C esaslı anyon değişimli membranlar için 0,316 W/m2 olarak bulunmuştur. Bu çalışma, ters elektrodiyaliz sistemi ile enerji üretimi için PECH bazlı membranların tasarım ve optimizasyon potansiyelini kanıtlamaktadır. Anahtar Kelimeler: Tuzluluk gradyan gücü, ters elektrodiyaliz, poliepiklorohidrin, anyon değişim membranları
  • Article
    Citation Count: 4
    Effect of Co-Existing Ions on Salinity Gradient Power Generation by Reverse Electrodialysis Using Different Ion Exchange Membrane Pairs
    (Mdpi, 2022) Güler, Enver; Altiok, Esra; Guler, Enver; Kabay, Nalan; Chemical Engineering
    This study investigates the influence of co-existing ions on the salinity gradient power generation performance of the reverse electrodialysis (RED) using three different commercial ion exchange membrane pairs. The feed solutions, including the mixture of two different salts, were prepared with 90 wt.% of NaCl and 10 wt.% of LiCl, KCl, CaCl2, MgCl2 or Na2SO4 by keeping the salt ratio between high concentrate solution and low concentrate solution constant as 1:30 (g/g) at various flow velocities (50, 125 and 200 mL/min). It was observed that the divalent ions exhibited a negative impact on the performance of the RED system due to their high valence and low ionic mobility depending on their high hydrated radius and low diffusion coefficients compared to those of the monovalent ions. On the other hand, the effect of the monovalent ions differed according to the properties of ion exchange membranes used in the RED stack. When the power generation performances of ion exchange membrane pairs employed in the RED stack were compared, it was considered that Neosepta AMX and CMX membranes provided the highest power density due to their low membrane thicknesses, low electrical resistances, and relatively high ion exchange capacities compared to other two commercial ion exchange membrane pairs.
  • Book Part
    Citation Count: 0
    Green energy generation using membrane technologies based on salinity gradient
    (Elsevier, 2023) Güler, Enver; Cihanoğlu,A.; Altıok,E.; Kaya,T.Z.; Eti,M.; Kabay,N.; Chemical Engineering
    Electrical energy can be extracted from salinity gradients, often represented by two aqueous solutions with different salinities. This becomes very interesting when sustainable and practical electromembrane processes can be applied to convert the salinity gradient power into electric power. Reverse electrodialysis (RED), in this context, has gained much interest in the last few years. In addition to many operational and design parameters affecting the process output, ion exchange membranes (IEMs) represent core elements in RED. In this chapter, it is aimed to introduce and discuss the current trend of IEMs as well as vital operational parameters and fouling affecting the RED performance. © 2023 Elsevier Inc. All rights reserved.
  • Book Part
    Citation Count: 11
    Water flux and reverse salt flux
    (Elsevier, 2018) Güler, Enver; Guler,E.; Harman,B.I.; Gonulsuz,E.; Chemical Engineering
    Following the increase in the world population and the demand for economic development, the need for energy has increased day by day. Rapidly increasing global energy consumption is supplied mainly by fossil fuels bearing the risk of exhaustion with decreasing reserves, which now have the effect of carbon emissions and greenhouse gases. These concerns lead humanity to significantly reduce the use of fossil fuels. Salinity gradient energy (SGP), a type of hydroelectric energy, also has a high potential to displace fossil fuels. SGP is less periodic than sources like wind and solar energy. The osmotic pressure gradient energy uses the released energy during mixing of the water currents with different salinity The Gibbs free energy from mixing two solutions of different concentrations is an unnoticed source of energy. Salinity gradient energy, also referred to as osmotic energy or blue energy, can be derived from natural sources such as clean river water, salt water, and desalination of seawater. Various approaches have been developed to capture salinity gradient energy, but the most promising are pressure-retarded osmosis (PRO), reverse electrodialysis (RED) and forward osmosis (FO) processes. In this chapter theoretical approaches derived from the current literature is presented for the deep conceptual understanding of the water flux and reverse salt flux issues. © 2018 Elsevier B.V. All rights reserved.