Gökdoğan, Bengisu Yalçınkaya
Loading...
Name Variants
Gökdoğan,B.Y.
G., Bengisu Yalçınkaya
G.,Bengisu Yalçınkaya
Gökdoğan B.
G., Bengisu Yalcinkaya
Gokdogan B.
B.,Gökdoğan
G.,Bengisu Yalcinkaya
Bengisu Yalcinkaya, Gokdogan
Gokdogan, Bengisu Yalcinkaya
B. Y. Gokdogan
Bengisu Yalçınkaya, Gökdoğan
B. Y. Gökdoğan
B.Y.Gökdoğan
Yalcinkaya B.
Gökdoğan, Bengisu Yalçınkaya
Gokdogan,B.Y.
B.Y.Gokdogan
Yalcinkaya, Bengisu
B., Gokdogan
G., Bengisu Yalçınkaya
G.,Bengisu Yalçınkaya
Gökdoğan B.
G., Bengisu Yalcinkaya
Gokdogan B.
B.,Gökdoğan
G.,Bengisu Yalcinkaya
Bengisu Yalcinkaya, Gokdogan
Gokdogan, Bengisu Yalcinkaya
B. Y. Gokdogan
Bengisu Yalçınkaya, Gökdoğan
B. Y. Gökdoğan
B.Y.Gökdoğan
Yalcinkaya B.
Gökdoğan, Bengisu Yalçınkaya
Gokdogan,B.Y.
B.Y.Gokdogan
Yalcinkaya, Bengisu
B., Gokdogan
Job Title
Araştırma Görevlisi
Email Address
bengisu.yalcinkaya@atilim.edu.tr
Main Affiliation
Electrical-Electronics Engineering
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Sustainable Development Goals
SDG data is not available

Scholarly Output
12
Articles
8
Citation Count
12
Supervised Theses
0
12 results
Scholarly Output Search Results
Now showing 1 - 10 of 12
Article Citation - WoS: 5Citation - Scopus: 6On the Design and Effectiveness of Simulink-Based Educational Material for a Communication Systems Course(Wiley, 2020) Coruk, R. Busra; Yalcinkaya, Bengisu; Kara, Ali; Electrical-Electronics Engineering; Department of Electrical & Electronics EngineeringThe methods used in engineering education have gained diversity in parallel with rapidly evolving technology. New technological methods along with the traditional methods have been adopted for undergraduate education. Today, Simulink-based educational materials are used in many fields in engineering education. However, in the literature, the contribution of such educational materials to the learning process has not been measured thoroughly. This study presents a comprehensive measurement method to improve the created course material and show the effectiveness of developed course material in students' success. First, educational material was developed for an undergraduate electrical engineering course: communication systems. A feedback group made up of diverse student learners was employed extensively in the material development phase. Next, the impact of the developed material on the success of the students was examined using both qualitative and quantitative measurement tools including questionnaires, one-to-one interviews, and class and university level anonymous surveys. This also included students' performance regarding laboratory quizzes and achievement of course learning outcomes. Overall, the measurement results show that the course material increased students' success in the course. Moreover, students' general perception of the course material was positive.Conference Object Citation - Scopus: 1Uav Detection and Ranging With 77-81 Ghz Fmcw Radar(Ieee, 2022) Doganay, Bengisu; Arslan, Mustafa; Demir, Efe Can; Coruk, Remziye Busra; Gokdogan, Bengisu Yalcinkaya; Aydin, Elif; Department of Electrical & Electronics Engineering; Electrical-Electronics EngineeringIn this study, detection of unmanned aerial vehicles (UAV), determination of radar cross-section (RCS) values, and range estimation were performed using a commercial off-the-shelf (COTS) millimeter-wave Frequency Modulated Continuous Wave (mmWave FMCW) radar system in the 77-81 GHz frequency band. The measurements were carried out in a laboratory environment using a single transceiver antenna without the need for an anechoic chamber. RCS values of different vertically and horizontally positioned UAVs were measured experimentally along the 360 degrees aspect angle, and the simulated results obtained from computational tool were compared with the experimental results. The measurement and simulation results, together with the range estimation, matched with high accuracy.Article Citation - WoS: 2Citation - Scopus: 3Modeling and Measurement of Human Body Blockage Loss at 28 Ghz(Taylor & Francis Ltd, 2023) Benzaghta, Mohamed; Gokdogan, Bengisu Yalcinkaya; Coruk, Remziye Busra; Kara, Ali; Electrical-Electronics Engineering; Department of Electrical & Electronics EngineeringMillimeter-wave (mm-Wave) spectrum is an essential enabler to the fifth generation (5G) wireless technology. Humans are one of the most noticeable blockers that cause temporal variation in indoor radio channels. This paper presents human blockage measurements at 28 GHz, with several humans of different sizes. The effect of the crossing orientations of the human bodies is investigated for three different transmitter heights. A human blockage model based on the Fresnel diffraction scheme is shown to be applicable in estimating the human blockage loss in indoor radio links considering various body sizes, different crossing orientations, and different transmitter heights. The findings reported in this paper could help improve indoor radio channel models at 28 GHz bands for 5G technologies considering the presence of human body blockages.Article Low Signature UAVs: Radar Cross Section Analysis, Simulation, and Measurement in X-Band(Springer London Ltd, 2025) Unalir, Dizdar; Yalcinkaya, Bengisu; Aydin, Elif; Department of Electrical & Electronics Engineering; Electrical-Electronics EngineeringThe increasing prevalence of unmanned aerial vehicles (UAVs) is driving the development of radar systems capable of detecting them. This hampers the deployment of UAVs in military operations. While radar cross section reduction (RCSR) can be a valuable solution, the research on this subject is inadequate. This paper presents an RCSR approach adopting a shaping technique for UAVs, demonstrating the proposed approach's efficacy through simulations and actual experimental measurements performed in X-Band on a four-legged UAV model. Using electromagnetic computational instruments, the shaping is applied to the designed UAV model with parameter-based simulations, the simulated radar cross section (RCS) values are derived, and the comparative analysis of these instruments is conducted. Experimental measurements are performed in laboratory conditions using a vector network analyzer. Actual measurement results are validated by simulative findings with the examination of the influence of frequency, polarization, and aspect angle on RCS. The demonstrated measuring approach allows cost-effective and easily applicable research on RCS in X-Band, a commonly utilized frequency range in military. An average RCSR of 10 dBsm has been accomplished with the presented shaping approach.Article Citation - WoS: 3Citation - Scopus: 5On the Classification of Modulation Schemes Using Higher Order Statistics and Support Vector Machines(Springer, 2022) Coruk, Remziye Busra; Gokdogan, Bengisu Yalcinkaya; Benzaghta, Mohamed; Kara, Ali; Electrical-Electronics Engineering; Department of Electrical & Electronics EngineeringThe recognition of modulation schemes in military and civilian applications is a major task for intelligent receiving systems. Various Automatic Modulation Classification (AMC) algorithms have been developed for this purpose in the literature. However, classification with low computational complexity as well as reasonable processing time is still a challenge. In this paper, a feature-based approach along with various classifiers is employed based on statistical features as well as higher-order moments and cumulants. An over-the-air (OTA) recorded dataset consisting of four analog and ten digital modulation schemes are used for testing the proposed method at 0-20 dB SNR. The overall accuracy for quadratic Support Vector Machine (SVM) is found to be as high as 98% at 10 dB. The comparison of the results with other AMC papers published in the literature indicates that the proposed method present higher accuracy, especially for realistic channel induced OTA dataset.Article Citation - WoS: 1Citation - Scopus: 1Millimeter-Wave Sar Imaging for Sub-Millimeter Defect Detection With Non-Destructive Testing(Mdpi, 2025) Yalcinkaya, Bengisu; Aydin, Elif; Kara, Ali; Department of Electrical & Electronics Engineering; Electrical-Electronics EngineeringThis paper introduces a high-resolution 77-81 GHz mmWave Synthetic Aperture Radar (SAR) imaging methodology integrating low-cost hardware with modified radar signal characteristics specifically for NDT applications. The system is optimized to detect minimal defects in materials, including low-reflectivity ones. In contrast to the existing studies, by optimizing key system parameters, including frequency slope, sampling interval, and scanning aperture, high-resolution SAR images are achieved with reduced computational complexity and storage requirements. The experiments demonstrate the effectiveness of the system in detecting optically undetectable minimal surface defects down to 0.4 mm, such as bonded adhesive lines on low-reflectivity materials with 2500 measurement points and sub-millimeter features on metallic targets at a distance of 30 cm. The results show that the proposed system achieves comparable or superior image quality to existing high-cost setups while requiring fewer data points and simpler signal processing. Low-cost, low-complexity, and easy-to-build mmWave SAR imaging is constructed for high-resolution SAR imagery of targets with a focus on detecting defects in low-reflectivity materials. This approach has significant potential for practical NDT applications with a unique emphasis on scalability, cost-effectiveness, and enhanced performance on low-reflectivity materials for industries such as manufacturing, civil engineering, and 3D printing.Conference Object Citation - WoS: 1Citation - Scopus: 1Radar Cross Section Studies of Low Signature UAVs in X-Band: Simulation, Measurement and Performance Evaluation(IEEE, 2024) Unalir, Dizdar; Gokdogan, Bengisu Yalcinkaya; Aydin, Elif; Department of Electrical & Electronics Engineering; Electrical-Electronics EngineeringIn this study, the effectiveness of a radar cross section (RCS) reduction method based on a proposed shaping technique for four-legged unmanned aerial vehicles (UAV) has been proven with simulation tools and experimental measurements in X-Band. Simulative RCS values were obtained with CST and HFSS electromagnetic calculation tools, and the advantages of these tools compared to each other were examined. Experimental measurements were carried out in a laboratory environment with a vector network analyzer (VNA) and confirmed with simulation results. The effects of frequency, polarization and aspect angle factors on RCS were examined. It has been shown that with the proposed measurement method, low-cost and easily applicable RCS analysis can be performed in X-Band, one of the frequency bands frequently used in the defense industry. With the proposed shaping method, RCS reduction in the range of 5-10 dBsm was achieved.Conference Object Citation - WoS: 2Citation - Scopus: 3An Experimental Study on the Influence of Human Movement in Indoor Radio Channel at 28ghz(Ieee, 2021) Benzaghta, Mohamed; Coruk, Remziye Busra; Yalcinkaya, Bengisu; Kara, Ali; Electrical-Electronics Engineering; Department of Electrical & Electronics EngineeringHuman activities around the communication link in an indoor environment have a significant impact on millimeter-wave (mmWave) communication systems, which are used for the new generation of communication networks (5G). Therefore, it is essential to evaluate short range indoor links from the link blockage point of view. This paper presents the propagation measurements in the presence of human activity, for a short range indoor office environment communication link at 28 GHz. During the experimental measurements, the human activity of three and six persons were observed for three different antenna height combinations. The human blockage (shadowing effect) is characterized in terms of the shadowing event duration, temporal fading, as well as overall attenuation. The results reported by this experimental study is believed to be vital in designing future mmWave communication systems that can overcome the deep fades caused by human blockage in short indoor communication links. Yet, this paper constitutes a part of an ongoing research study, further detailed results will be foreseen to present the precise effect of human movements around the propagation link at 28GHz.Article Blockage Loss and Shadow Fading Behavior of Millimeter-Wave Signals Due To Human Bodies at 28 Ghz(Wiley, 2024) Benzaghta, Mohamed; Gokdogan, Bengisu Yalcinkaya; Coruk, Remziye Busra; Kara, Ali; Electrical-Electronics Engineering; Department of Electrical & Electronics EngineeringAs the millimeter-wave (mm-Wave) spectrum is considered to be an essential enabler to the fifth generation (5G) wireless communication systems. Human movements are one of the most significant factors that cause transient blockage in indoor mm-wave channels. In this letter, human blockage measurements and shadow fading statistics due to human body movements in an indoor office environment are reported for the 28 GHz band. The effect of human bodies on the channel is measured for several scenarios including a variety of population and using diverse antenna heights. The reported shadow fading statistics include both the duration and the depth of the blockage fade, and accordingly, we propose several empirical models that cater for such blockage events. The findings reported in this letter could improve the modeling of indoor radio channels at 28 GHz bands by considering the presence of humans, as well as their movements.Conference Object Citation - WoS: 1Citation - Scopus: 3Low Radar Cross Section Uav Design in X-Band(Ieee, 2022) Unalir, Dizdar; Sezgin, Sila; Yuva, Cansu Sena; Yalcinkaya Gokdogan, Bengisu; Aydin, Elif; Department of Electrical & Electronics Engineering; Electrical-Electronics EngineeringAs Unmanned Aerial Vehicles (UAVs) have become widespread in defense industry, the radar technology that can detect them has also improved. These improvements cause UAVs to be detected more easily, which limits their effectiveness in military usage. Although the reduction of the radar cross-section (RCS) can provide a solution to this issue, the studies regarding that is insufficient in the literature. In this study, a shaping method is recommended to reduce the RCS of UAVs, and it is shown the method is effective to address the problem. Firstly, using a simulation tool, an UAV model is designed from simple shapes and the model is validated by comparing it with the ones in literature. Secondly, RCS values are measured using vertical and horizontal polarization throughout 360 degrees by incrementing the aspect angle by one degree in X-Band using the CST Studio Suite environment. Then, considering the hardware and aerodynamic requirements as well as limitations of the UAV model, a shaping technique is applied to the body, legs and the hollow parts of the UAV model with parametric simulations. The results show that the recommended shaping technique can provide a significant reduction in the RCS of an UAV.