Turan, Mehmet

Loading...
Profile Picture
Name Variants
T., Mehmet
Turan M.
M.,Turan
Turan,Mehmet
Mehmet, Turan
T.,Mehmet
Turan A.
Mehmet Turan
M., Turan
Turan, Mehmet
Turan,M.
Turan, M.
Job Title
Profesör Doktor
Email Address
mehmet.turan@atilim.edu.tr
Main Affiliation
Mathematics
Status
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

1

Research Products
This researcher does not have a Scopus ID.
This researcher does not have a WoS ID.
Scholarly Output

51

Articles

41

Views / Downloads

222/2755

Supervised MSc Theses

4

Supervised PhD Theses

2

WoS Citation Count

81

Scopus Citation Count

93

WoS h-index

5

Scopus h-index

5

Patents

0

Projects

0

WoS Citations per Publication

1.59

Scopus Citations per Publication

1.82

Open Access Source

11

Supervised Theses

6

Google Analytics Visitor Traffic

JournalCount
Mathematical Methods in the Applied Sciences3
Quaestiones Mathematicae2
Bulletin of the Malaysian Mathematical Sciences Society2
Numerical Functional Analysis and Optimization2
Multimedia Tools and Applications2
Current Page: 1 / 7

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 10 of 51
  • Article
    Citation - WoS: 2
    Citation - Scopus: 1
    The Continuity in Q of the Lupaş Q-Analogues of the Bernstein Operators
    (Academic Press inc Elsevier Science, 2024) Yilmaz, Ovgue Gurel; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Turan, Mehmet; Ostrovska, Sofiya; Mathematics; Mathematics
    The Lupas q-analogue Rn,q of the Bernstein operator is the first known q-version of the Bernstein polynomials. It had been proposed by A. Lupas in 1987, but gained the popularity only 20 years later, when q-analogues of classical operators pertinent to the approximation theory became an area of intensive research. In this work, the continuity of operators Rn,q with respect to parameter q in the strong operator topology and in the uniform operator topology has been investigated. The cases when n is fixed and n -> infinity have been considered. (c) 2022 Elsevier Inc. All rights reserved.
  • Article
    On the Moment-Determinacy of Power Lindley Distribution and Some Applications To Software Metrics
    (Acad Brasileira de Ciencias, 2021) Khalleefah, Mohammed; Ostrovska, Sofiya; Turan, Mehmet
    The Lindley distribution and its numerous generalizations are widely used in statistical and engineering practice. Recently, a power transformation of Lindley distribution, called the power Lindley distribution, has been introduced by M. E. Ghitany et at who initiated the investigation of its properties and possible applications. In this article, new results on the power Lindley distribution are presented. The focus of this work is on the moment-(in)determinacy of the distribution for various values of the parameters. Afterwards, certain applications are provided to describe data sets of software metrics.
  • Article
    On the Lupas q-transform of Unbounded Functions
    (Walter de Gruyter Gmbh, 2023) Ostrovska, Sofiya; Turan, Mehmet
    The Lupa , s q-transform comes out naturally in the study of the Lupa , s q-analogue of the Bernstein operator. It is closely related to the Heine q-distribution which has a numerous application in q-boson operator calculus and to the Valiron method of summation for divergent series. In this paper, the Lupa , s q-transform (lambda(q)f)(z), q is an element of (0, 1), of unbounded functions is considered in distinction to the previous researches, where only the case f is an element of C[0, 1] have been investigated. First, the condition for a function to possess the Lupa , s q-transform is presented. Also, results concerning the connection between growth rate of the function f (t) as t -> 1(-) and the growth of its Lupa , s q-transform (lambda(q)f)(z) as z -> infinity are established. (c) 2023 Mathematical Institute Slovak Academy of Sciences
  • Master Thesis
    Q-bernstein Polinomlarının Özellikleri Üzerine
    (2017) Almesbahı, Manal Mastafa; Turan, Mehmet; Ostrovska, Sofıya
    Bu tezin amacı Bernstein polinomları teorisini ve son genişletmesi olan q-kalkülüsü çalışmaktır. Bu çalışmanın temel odak noktası 20 yıl önce ortaya çıkan ve kısa sürede birçok araştırmacının dikkatini çeken q-Bernstein polinomlarıdır. Bu tez Bernstein polinomlarına dair bilinen bazı sonuçların derlemesinden, q-Bernstein polinomları teorisine kısa bir giriş ve bazı yeni gelişmelerden oluşmaktadır. Yeni gelişmeler kısmında; limit q-Bernstein operatör dizisinin kuvvetli operatör limiti ve q-Bernstein operatörlerinin zayıf Picard operatörler oldukları ifade edilmiştir.
  • Article
    Fedja’s Proof of Deepti’s Inequality
    (Tubitak Scientific & Technological Research Council Turkey, 2018) Ostrovska, Sofiya; Turan, Mehmet
    The paper aims to present, in a systematic way, an elegant proof of Deepti’s inequality. Both the inequalityand various ideas concerning the issue were discussed on the Mathoverflow website by a number of users, but none haveappeared in the literature thus far. In this work, suggestions pertaining to users ‘Deepti’ and ‘fedja’ are traced, whencethe title. The results or the paper are new, and the proof is divided into a series of statements, many of which are ofinterest in themselves.
  • Conference Object
    Citation - WoS: 2
    The Limit q-bernstein Operators With Varying q
    (Springer international Publishing Ag, 2019) Almesbahi, Manal Mastafa; Ostrovska, Sofiya; Turan, Mehmet
    [No Abstract Available]
  • Conference Object
    Density-Aware Outage in Clustered Ad Hoc Networks
    (Ieee, 2018) Eroglu, Alperen; Onur, Ertan; Turan, Mehmet
    Density of ad hoc networks may vary in time and space because of mobile stations, sleep scheduling or failure of nodes. Resources such as spectrum will be wasted if the network is not density-aware and -adaptive. Towards this aim, distributed and robust network density estimators are required. In this paper, we propose a novel cluster density estimator in random ad hoc networks by employing distance matrix. Monte-Carlo simulation results validate the proposed estimator. The accuracy of the estimator is impressive even under a high amount of distance measurement errors. We also propose a network outage model and a transmit power adaption technique that are density-aware. The results indicate the necessity of the density-aware solutions for making network performance better from capacity, coverage and energy conservation viewpoints.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    On the q-moment Determinacy of Probability Distributions
    (Malaysian Mathematical Sciences Soc, 2020) Ostrovska, Sofiya; Turan, Mehmet
    Given 0
  • Article
    Citation - WoS: 4
    Citation - Scopus: 4
    On the Powers of the Kummer Distribution
    (Academic Publication Council, 2017) Ostrovska, Sofiya; Turan, Mehmet; Mathematics
    The Kummer distribution is a probability distribution, whose density is given by f (x) = cx (alpha-1)(1 + delta x)(-gamma) e(-beta x), X > 0, where alpha, beta, delta > 0, gamma is an element of R and C is a normalizing constant. In this paper, the distributions of random variable X-P, p > 0, where X has the Kummer distribution, are considered with the conditions being IFR/DFR, some properties of moments depending on the parameters and the moment-(in) determinacy. In the case of moment-indeterminacy, exemplary Stieltjes classes are constructed.
  • Master Thesis
    İkinci Mertebeden Lineer Olmayan Bir Fark Denkleminin Dinamikleri Üzerine
    (2014) Aksoy, Aycan; Turan, Mehmet
    Bu tezde iki keyfi parametre içeren ikinci dereceden özel bir rasyonel fark denklemi ele alınmıştır. Bu denklem bazı dinamik yapıları incelenmiştir: pozitif çözümlerin kararlılık ve yarı döngü analizleri; periyodik çözümlerin varlığı; denge noktasının yerel ve global kararlılık analizleri yapılmıştır. Bu tez dört bölümden oluşmaktadır. İlk bölümde fark denklemleri hakkında tarihsel bilgi, bunların bazı modellemeleri, ve yakın zamanda yapılmış bazı çalışmalar verilmiştir. İkinci bölümde, diziler ve fark denklemleriyle ilgili bilinen tanımlar ve sonuçlar gösterilmiştir. Asıl sonuçlar Bölüm 3'te sunulmuştur. Son bölümde kısa bir sonuç yazılmıştır.