This item is non-discoverable
Tora, Hakan
Loading...
Name Variants
Tora,H.
T., Hakan
Tora, Hakan
H., Tora
H.,Tora
T.,Hakan
Hakan, Tora
T., Hakan
Tora, Hakan
H., Tora
H.,Tora
T.,Hakan
Hakan, Tora
Job Title
Doktor Öğretim Üyesi
Email Address
hakan.tora@atilim.edu.tr
Main Affiliation
Airframe and Powerplant Maintenance
Status
Former Staff
Website
ORCID ID
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Scholarly Output
53
Articles
11
Citation Count
35
Supervised Theses
15
3 results
Scholarly Output Search Results
Now showing 1 - 3 of 3
Article Citation - WoS: 8Citation - Scopus: 9A Novel Data Encryption Method Using an Interlaced Chaotic Transform(Pergamon-elsevier Science Ltd, 2024) Gokcay, Erhan; Tora, Hakan; Software Engineering; Airframe and Powerplant MaintenanceWe present a novel data encryption approach that utilizes a cascaded chaotic map application. The chaotic map used in both permutation and diffusion is Arnold's Cat Map (ACM), where the transformation is periodic and the encrypted data can be recovered. The original format of ACM is a two-dimensional mapping, and therefore it is suitable to randomize the pixel locations in an image. Since the values of pixels stay intact during the transformation, the process cannot encrypt an image, and known-text attacks can be used to get back the transformation matrix. The proposed approach uses ACM to shuffle the positions and values of two-dimensional data in an interlaced and nested process. This combination extends the period of the transformation, which is significantly longer than the period of the initial transformation. Furthermore, the nested process's possible combinations vastly expand the key space. At the same time, the interlaced pixel and value transformation makes the encryption highly resistant to any known-text attacks. The encrypted data passes all random-data tests proposed by the National Institute of Standards and Technology. Any type of data, including ASCII text, can be encrypted so long as it can be rearranged into a two-dimensional format.Article Citation - WoS: 10Citation - Scopus: 12A Generalized Arnold's Cat Map Transformation for Image Scrambling(Springer, 2022) Tora, Hakan; Gokcay, Erhan; Turan, Mehmet; Buker, Mohamed; Mathematics; Software Engineering; Airframe and Powerplant MaintenanceThis study presents a new approach to generate the transformation matrix for Arnold's Cat Map (ACM). Matrices of standard and modified ACM are well known by many users. Since the structure of the possible matrices is known, one can easily select one of them and use it to recover the image with several trials. However, the proposed method generates a larger set of transform matrices. Thus, one will have difficulty in estimating the transform matrix used for scrambling. There is no fixed structure for our matrix as in standard or modified ACM, making it much harder for the transform matrix to be discovered. It is possible to use different type, order and number of operations to generate the transform matrix. The quality of the shuffling process and the strength against brute-force attacks of the proposed method is tested on several benchmark images.Conference Object Citation - WoS: 0Effect of Secret Image Transformation on the Steganography Process(Ieee, 2017) Buker, Mohamed; Tora, Hakan; Gokcay, Erhan; Software Engineering; Airframe and Powerplant MaintenanceSteganography is the art of hiding information in something else. It is favorable over encryption because encryption only hides the meaning of the information; whereas steganography hides the existence of the information. The existence of a hidden image decreases Peak Signal to Noise Ratio (PSNR) and increases Mean Square Error (MSE) values of the stego image. We propose an approach to improve PSNR and MSE values in stego images. In this method a transformation is applied to the secret image, concealed within another image, before embedding into the cover image. The effect of the transformation is tested with Least Significant Bit (LSB) insertion and Discrete Cosine Transformation (DCT) techniques. MSE and PSNR are calculated for both techniques with and without transformation. Results show a better MSE and PSNR values when a transformation is applied for LSB technique but no significant difference was shown in DCT technique.