1. Home
  2. Browse by Author

Browsing by Author "Yildiz, Dilber Esra"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 8
    Citation - Scopus: 8
    A Study on the Dark and Illuminated Operation of Al/Si3< Schottky Photodiodes: Optoelectronic Insights
    (Springer Heidelberg, 2024) Surucu, Ozge; Yildiz, Dilber Esra; Yildirim, Murat; Electrical-Electronics Engineering
    This work extensively investigates the operation of an Al/ Si3N4/p-Si Schottky-type photodiode under dark and varying illumination intensities. The photodiode is fabricated by employing the metal-organic chemical vapor deposition (MOCVD) method. A thorough electrical characterization is performed at room temperature, encompassing measurements of current-voltage (I-V), current-time (I-t), capacitance-time (C-t), and conductance time (G-t). The photodiode's rectification factor and reverse bias area increased under illumination. The relationship between light power density, barrier height, and diode ideality factor is found. The study also found a strong correlation between light intensity and applied voltage on series resistance (R-s) and shunt resistance (R-sh). R-s values are calculated using Cheung's functions, revealing the diode's resistance behavior. The study also examines the photodiode's photoconductivity and photoconductance, finding a non-linear relationship between photocurrent and illumination intensity, suggesting bimolecular recombination. Calculated photosensitivity (K), responsivity (R), and detectivity (D*) values show the device's light response effectiveness, but efficiency decreases at higher illumination intensities. Transient experiments indicate stable and reproducible photocurrent characteristics, revealing photogenerated charge temporal evolution. This study provides a complete understanding of the Al/Si3N4/p-Si Schottky photodiode's behavior under different illumination intensities. The findings advance optoelectronic device knowledge and enable their use in advanced technologies.