1. Home
  2. Browse by Author

Browsing by Author "Pehlivanoglu, Kubra"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - WoS: 9
    Citation - Scopus: 12
    Design of a Hybrid Photovoltaic-Electrolyzer Fuel Cell System for Developing Solar Model
    (Wiley-v C H verlag Gmbh, 2015) Devrim, Yilser; Pehlivanoglu, Kubra; Energy Systems Engineering
    The world's fossil fuel energy reserves have rapidly decreased, while the energy demand has increased due to industrial growth, population growth, and technology advances, all of which affect the environment by the production of greenhouse gases. Alternative energy sources such as solar, hydrogen, etc. are attracting more attention as an alternative of fossil fuels. We present in this study hybrid photovoltaic (PV) panels/PEM electrolyzer/high temperature proton exchange membrane fuel cell (HTPEMFC) system used in off-grid application. The purpose of a hybrid system is to produce as much energy from alternative energy sources to ensure the load demand. Solar energy is used as primary source and a fuel cell is used as backup power. The hybrid system is designed and analyzed according to the new solar radiation model. Firstly a new solar model is developed to determine solar radiation on horizontal surface. After that solar radiation on tilted surface is obtained by using solar radiation on horizontal surface model for PV panel calculations. The hybrid system is modelled and the obtained results presented and discussed. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 154
    Citation - Scopus: 166
    Development of Polybenzimidazole/Graphene Oxide Composite Membranes for High Temperature Pem Fuel Cells
    (Pergamon-elsevier Science Ltd, 2017) Uregen, Nurhan; Pehlivanoglu, Kubra; Ozdemir, Yagmur; Devrim, Yilser; Energy Systems Engineering
    In this study, phosphoric acid doped Polybenzimidazole/Graphene Oxide (PBI/GO) nano composite membranes were prepared by dispersion of various amounts of GO in PBI polymer matrix followed by phosphoric acid doping for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. The structure of the PBI/GO composite membranes was investigated by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and by thermogravimetric analysis (TGA). The introduction of GO into the FBI polymer matrix helps to improve the acid doping, proton conductivity and acid leaching properties. The SEM analyses have proved the uniform and homogeneous distribution of GO in composite membranes. The composite membranes were tested in a single HT-PEMFC with a 5 cm(2) active area at 165 degrees C without humidification. HT-PEMFC tests show that PBI/ GO composite membrane with 2 wt. % GO content performed better than bare PBI membrane at non humidified condition. At ambient pressure and 165 degrees C, the maximum power density of the PBI/GO-1 membrane can reach 0.38 W/cm(2), and the current density at 0.6 V is up to 0.252 A/cm(2), with H-2/air. The results indicate the PBI/GO composite membranes could be utilized as the proton exchange membranes for HT-PEMFC. (C) 2016 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.