1. Home
  2. Browse by Author

Browsing by Author "Maiga, Bamoye"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 8
    Citation - Scopus: 15
    Distributed denial-of-service attack mitigation in network functions virtualization-based 5G networks using management and orchestration
    (Wiley, 2021) Koksal, Sarp; Dalveren, Yaser; Maiga, Bamoye; Kara, Ali; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    The fifth generation (5G) technology is expected to allow connectivity to billions of devices, known as Internet of Things (IoT). However, IoT devices will inevitably be the main target of various cyberattack types. The most common one is known as distributed denial-of-service (DDoS) attack. In order to mitigate such attacks, network functions virtualization (NFV) has a great potential to provide the benefit of elasticity and low-cost solutions for protecting 5G networks. In this context, this study proposes a new mechanism developed to mitigate DDoS attacks in 5G NFV networks. The proposed mechanism utilizes intrusion prevention system's (IPS) virtual machines (VMs) to intercept the queries. Based on the volume of DDoS traffic, IPS's VMs are dynamically deployed by means of management and orchestration (MANO) in order to balance the load. To evaluate the effectiveness of the mechanism, experiments are conducted in a real 5G NFV environment built by using 5G NFV environment tools. To our best knowledge, this is the first time that NFV-based mechanism is experimentally tested in a real 5G NFV environment for mitigating DDoS attacks in 5G networks. The experimental results verify that the proposed mechanism can mitigate DDoS attacks effectively.
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Düşük Çözünürlüklü Görüntülerde Araç Tespiti ve Siniflandirmasi için Birden Fazla Aşamali Modüler Bir Yöntem
    (2025) Maiga, Bamoye; Dalveren, Yaser; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Akıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Düşük Çözünürlüklü Görüntülerde Araç Tespiti ve Sınıflandırması İçin Birden Fazla Aşamalı Modüler Bir Yöntem
    (2025) Maiga, Bamoye; Dalveren, Yaser; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences; 01. Atılım University
    Akıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.
  • Loading...
    Thumbnail Image
    Doctoral Thesis
    Düşük Çözünürlülüklü Görüntülerde Araç Tespiti ve Sınıflandırması İçin Birden Fazla Aşamalı Modüller Bir Yöntem
    (2025) Maiga, Bamoye; Dalveren, Yaser; 01. Atılım University; Department of Electrical & Electronics Engineering; 15. Graduate School of Natural and Applied Sciences
    Akıllı ulaşım sistemlerinde (ITS) gerçek zamanlı araç tespitinin önemi, şehir trafiğindeki araç sayısındaki sonsuz ve sürekli artışla vurgulanmaktadır. Bununla birlikte, çok çeşitli kamera kaliteleri ve çözünürlükleri, farklı görüş açıları ve zayıf aydınlatma ve olumsuz hava koşulları gibi harici ve kontrol edilemeyen değişkenlerin etkisi, doğru araç tespiti ve sınıflandırmasında birçok zorluk yaratmaktadır. Derin öğrenme tabanlı nesne algılama algoritmalarının çoğu, daha önce bahsedilen bu koşullar düşük görünürlük ve/veya düşük çözünürlüklü görüntülere neden olduğu için bu tür durumlarda zorlanmaktadır. Bu kısıtlamaların üstesinden gelmek için bu çalışma, loş ışık, kötü hava koşulları ve düşük çözünürlük gibi zorlu görüntüleme durumlarına uyarlanmış gerçek zamanlı araç tespiti ve sınıflandırması için yeni, modüler, etkili ve güvenilir bir yaklaşım önermektedir. Önerilen yaklaşım iki özel veri kümesinin oluşturulmasını içermektedir. İlk veri kümesi PASCAL VOC formatında 4.500 düşük çözünürlüklü trafik manzarası görüntüsünden oluşmakta ve transfer öğrenme yoluyla bir nesne tespit modelini eğitmek için kullanılmaktadır. İkinci veri kümesi, iki farklı sınıflandırma modelini eğitmeyi amaçlayan, her biri 100 × 100 piksel boyutlarında ve 96 dpi ve altında çözünürlüğe sahip beş araç türünün 10.000 düşük çözünürlüklü görüntüsünü içerir. Önerilen yaklaşım, son teknoloji ürünü tek aşamalı bir dedektör (SSD) olan EFFICIENTDET1'i hafif bir özel evrişimli sinir ağı (CNN) sınıflandırıcısı ve bir XGBoost sınıflandırıcısı ile entegre etmektedir. Bu kombinasyon, hem makine hem de derin öğrenme algoritmalarının güçlü yönlerinden faydalanarak tespit performansını ve sınıflandırma doğruluğunu artırır. Önerilen yaklaşımın etkinliği deneysel değerlendirme ile gösterilmiştir. Önerilen yaklaşım, 0,9323 ortalama ortalama hassasiyet (mAP) ile aynı veri kümesi üzerinde karşılaştırılabilir koşullarda geleneksel ve son teknoloji nesne algılama modellerinden belirgin şekilde daha iyi performans göstermektedir. Ayrıca, çoklu işlemin uygulandığı önerilen yaklaşım, kare başına 26 milisaniyelik bir çıkarım hızına ulaşmaktadır. Bu, son teknoloji ürünü nesne yöntemlerine kıyasla hem doğruluk hem de çıkarım hızında önemli bir gelişmeye işaret etmektedir. Önerilen yaklaşımın modüler, uyarlanabilir ve ölçeklenebilir yapısı, onu ITS'deki uygulamalar için ideal kılmaktadır. Önerilen yaklaşımın yüksek doğruluğunun yanı sıra çıkarım hızı, düşük görüntü kalitesi veya olumsuz çevresel faktörler gibi koşullar altında gerçek zamanlı uygulamalar için etkili ve operasyonel bir seçenek haline getirmektedir. Sonuç olarak, önerilen yaklaşım, zorlu durumlarda daha güvenli ve daha etkili ulaşım yönetimi sağlayabileceğinden, derin öğrenme tabanlı araç algılama alanında büyük bir potansiyele sahiptir. Bu bulgular, verimli bir nesne algılama modelinin çok işlemli bir mimaride özel sınıflandırıcılarla birleştirilmesinin, gerçek zamanlı araç algılamada gelecekteki araştırmalar için umut verici bir yönü temsil ettiğini göstermektedir.
  • Loading...
    Thumbnail Image
    Research Project
    Yansımaları Kullanarak Emisyon Kaynaklarının Yer Tespiti
    (2021) Tabakcıoğlu, Mehmet Barış; Benzaghta, Mohamed; Imran, Md Abdullah Al; Taş, Sümeyra; Kara, Ali; Maiga, Bamoye; Dalveren, Yaser; 01. Atılım University
    Bu projede, deniz yüzeyi ve çevresindeki girinti çıktının çok olduğu bölgeler (kıyılar, koylar, adaların yoğun bölgeler vb.) başta olmak üzere, yansımaların olduğu tüm (askeri/sivil) operasyonel ortamlarda, yansımaların kullanılması suretiyle bir temas alıcısı (geniş bant pasif alıcı) tarafından emisyon kaynaklarının konumlarının tespit edilmesine yönelik yöntem ve araçlar geliştirilmiştir. Geliştirilen yöntemde, öncelikli olarak pürüzlü/düzensiz (rough and irregular) araziler üzerindeki saçılma merkezlerinin kestirimi yapılmaktadır. Bunu yapabilmek için, sayısal harita bilgileri bilinen ve yöntemin çalıştırılması öngörülen bölgelerde (örneğin, Ege Denizi ve çevresi), temas alıcısında var olan ölçüm yeteneklerinin de yardımıyla, emisyon kaynağına (radar vericisi) yönelik parametreler (darbe genişliği, hüzme açısı gibi) kullanılarak yansıma olan muhtemel bölgelerin sınırları belirlenmektedir. Ardından, muhtemel saçılma merkezleri belirlenerek, arazi kesitleri üzerinde radyo yayılım kayıpları, yüksek frekanslı teknikler (GTD/UTD) ve dalga yayılım etkileri (yansıma, kırınım) kullanan bir ışın izleme algoritmasıyla hesaplanmaktadır. Ayrıca, geliştirilen ışık izleme algoritması ile, saçılma merkezlerinin çok yollu yayılımın kaynağı olma olasılıkları da hesaplanabilmektedir. Geliştirilen yöntemin sonraki aşamasında, saçılma merkezleri yer tespit/konumlamada kullanılmak üzere yapay sensör olarak belirlenmektedir. Belirlenen yapay sensörler, çoklu sensör uygulaması için literatürde bilinen bir Varış Zaman Farkı (VZF: Time Difference of Arrival-TDOA) konumlama tekniğinde kullanılmaktadır. Yöntemin son aşamasında ise TDOA tekniği ile elde edilen pozisyonlar ile saçılma merkezlerinin çok yollu yayılımın kaynağı olma olasılıkları ağırlıklı ortalama alma yönteminde kullanılarak emisyon kaynağının konumu/pozisyonu kestirilmektedir. Bu şekilde, temas alıcısı ile birlikte yansımaların yapay sensör olarak kullanılması suretiyle, tek bir alıcı ile sabit emisyon kaynaklarının konumlanması yapılabilmektedir. Geliştirilen yöntemin kestirim doğruluğu ve uygulanabilirliği yüksek çözünürlüklü (DTED2) sayısal harita verileri ile gerçekçi senaryolar üzerinde benzetimler yapılarak değerlendirilmiştir. Elde edilen sonuçlar, geliştirilen yer tespit yönteminin elektronik harp uygulamalarında genel olarak uygulanabilir olduğunu doğrulamaktadır.