1. Home
  2. Browse by Author

Browsing by Author "Bonyadi, Farzaneh"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Enhanced Doxorubicin Cytotoxicity on Breast Cancer Spheroids by Aptamer Targeted Co-Delivery With Hyaluronidase
    (Wiley, 2025) Kavruk, Murat; Demirel, Dide Su; Bonyadi, Farzaneh; Guner, Buket Cakmak; Dursun, Ali Dogan; Vakifahmetoglu, Cekdar; Ozalp, Veli Cengiz
    Breast cancer is one of the most prevalent solid tumors in women and can be classified into subtypes based on molecular characteristics, such as hormone receptor status and HER2 expression. Aptamers, highly specific affinity molecules, are extensively studied for targeted drug delivery using nanocarriers to enhance anti-cancer efficacy. This study focused on HER2-responsive co-delivery of doxorubicin and hyaluronidase via aptamer-gated mesoporous silica nanoparticles to improve therapeutic outcomes in solid tumors. SK-BR-3 spheroids are employed as a model for resistant tumor environments in solid tumors. Previous research is shown that conjugating cytotoxic drugs with nanoparticles or cells enhances drug penetration into tumor spheroids. In this work, doxorubicin is loaded into mesoporous silica nanoparticles and capped with HER2-specific aptamers, while the particle surface is functionalized with hyaluronidase. This dual-functionalized nanocarrier system achieves an approximate to 8.5-fold increase in cytotoxicity compared to aptamer-targeted delivery lacking hyaluronidase. The enhanced effect is attributed to hyaluronidase-mediated loosening of the spheroid structure, facilitating nanoparticle penetration and localized release of doxorubicin at high concentrations on HER2-positive cells.
  • Loading...
    Thumbnail Image
    Review
    Citation - WoS: 25
    Citation - Scopus: 22
    Real-Time Biosensing Bacteria and Virus With Quartz Crystal Microbalance: Recent Advances, Opportunities, and Challenges
    (Taylor & Francis inc, 2023) Bonyadi, Farzaneh; Kavruk, Murat; Ucak, Samet; Cetin, Barbaros; Bayramoglu, Gulay; Dursun, Ali D. D.; Ozalp, Veli C. C.
    Continuous monitoring of pathogens finds applications in environmental, medical, and food industry settings. Quartz crystal microbalance (QCM) is one of the promising methods for real-time detection of bacteria and viruses. QCM is a technology that utilizes piezoelectric principles to measure mass and is commonly used in detecting the mass of chemicals adhering to a surface. Due to its high sensitivity and rapid detection times, QCM biosensors have attracted considerable attention as a potential method for detecting infections early and tracking the course of diseases, making it a promising tool for global public health professionals in the fight against infectious diseases. This review first provides an overview of the QCM biosensing method, including its principle of operation, various recognition elements used in biosensor creation, and its limitations and then summarizes notable examples of QCM biosensors for pathogens, focusing on microfluidic magnetic separation techniques as a promising tool in the pretreatment of samples. The review explores the use of QCM sensors in detecting pathogens in various samples, such as food, wastewater, and biological samples. The review also discusses the use of magnetic nanoparticles for sample preparation in QCM biosensors and their integration into microfluidic devices for automated detection of pathogens and highlights the importance of accurate and sensitive detection methods for early diagnosis of infections and the need for point-of-care approaches to simplify and reduce the cost of operation.