Browsing by Author "Anagun, Yildiray"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 12Citation - Scopus: 21Evaluation of Efficientnet Models for Covid-19 Detection Using Lung Parenchyma(Springer London Ltd, 2023) Kurt, Zuhal; Isik, Sahin; Kaya, Zeynep; Anagun, Yildiray; Koca, Nizameddin; Cicek, Suemeyye; Computer Engineering; 06. School Of Engineering; 01. Atılım UniversityWhen the COVID-19 pandemic broke out in the beginning of 2020, it became crucial to enhance early diagnosis with efficient means to reduce dangers and future spread of the viruses as soon as possible. Finding effective treatments and lowering mortality rates is now more important than ever. Scanning with a computer tomography (CT) scanner is a helpful method for detecting COVID-19 in this regard. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19-positive and 86 COVID-19-negative patients taken at the Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies show that the modified EfficientNet-ap-nish method uses this dataset effectively for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a preprocessing stage. Then, performance pretrained models are analyzed using different CNN architectures and with our Nish activation function. The statistical rates are obtained by the various EfficientNet models and the highest detection score is obtained with the EfficientNet-B4-ap-nish version, which provides a 97.93% accuracy rate and a 97.33% F1-score. The implications of the proposed method are immense both for present-day applications and future developments.Article Recurrent Neural Networks for Spam E-Mail Classification on an Agglutinative Language(2020) Işık, Şahin; Kurt, Zuhal; Anagun, Yildiray; Özkan, Kemal; Computer Engineering; 06. School Of Engineering; 01. Atılım UniversityIn this study, we have provided an alternative solution to spam and legitimate email classification problem. The different deep learning architectures are applied on two feature selection methods, including the Mutual Information (MI) and Weighted Mutual Information (WMI). Firstly, feature selection methods including WMI and MI are applied to reduce number of selected terms. Secondly, the feature vectors are constructed with concept of the bag-of-words (BoW) model. Finally, the performance of system is analyzed with using Artificial Neural Network (ANN), Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BILSTM) models. After experimental simulations, we have observed that there is a competition between detection results of using WMI and MI when commented with accuracy rates for the agglutinative language, namely Turkish. The experimental scores show that the LSTM and BILSTM give 100% accuracy scores when combined with MI or WMI, for spam and legitimate emails. However, for particular cross validation, the performance WMI is higher than MI features in terms e-mail grouping. It turns out that WMI and MI with deep learning architectures seem more robust to spam email detection when considering the high detection scores.
